Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

add ishikawa diagram to examples#26064

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to ourterms of service andprivacy statement. We’ll occasionally send you account related emails.

Already on GitHub?Sign in to your account

Merged
timhoffm merged 3 commits intomatplotlib:mainfromsaranti:fishbone
Jun 6, 2023
Merged
Changes fromall commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
203 changes: 203 additions & 0 deletionsgalleries/examples/specialty_plots/ishikawa_diagram.py
View file
Open in desktop
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,203 @@
"""
================
Ishikawa Diagram
================

Ishikawa Diagrams, fishbone diagrams, herringbone diagrams, or cause-and-effect
diagrams are used to identify problems in a system by showing how causes and
effects are linked.
Source: https://en.wikipedia.org/wiki/Ishikawa_diagram

"""
import matplotlib.pyplot as plt

from matplotlib.patches import Polygon, Wedge

# Create the fishbone diagram
fig, ax = plt.subplots(figsize=(10, 6), layout='constrained')
ax.set_xlim(-5, 5)
ax.set_ylim(-5, 5)
ax.axis('off')


def problems(data: str,
problem_x: float, problem_y: float,
prob_angle_x: float, prob_angle_y: float):
"""
Draw each problem section of the Ishikawa plot.

Parameters
----------
data : str
The category name.
problem_x, problem_y : float, optional
The `X` and `Y` positions of the problem arrows (`Y` defaults to zero).
prob_angle_x, prob_angle_y : float, optional
The angle of the problem annotations. They are angled towards
the tail of the plot.

Returns
-------
None.

"""
ax.annotate(str.upper(data), xy=(problem_x, problem_y),
xytext=(prob_angle_x, prob_angle_y),
fontsize='10',
color='white',
weight='bold',
xycoords='data',
verticalalignment='center',
horizontalalignment='center',
textcoords='offset fontsize',
arrowprops=dict(arrowstyle="->", facecolor='black'),
bbox=dict(boxstyle='square',
facecolor='tab:blue',
pad=0.8))


def causes(data: list, cause_x: float, cause_y: float,
cause_xytext=(-9, -0.3), top: bool = True):
"""
Place each cause to a position relative to the problems
annotations.

Parameters
----------
data : indexable object
The input data. IndexError is
raised if more than six arguments are passed.
cause_x, cause_y : float
The `X` and `Y` position of the cause annotations.
cause_xytext : tuple, optional
Adjust to set the distance of the cause text from the problem
arrow in fontsize units.
top : bool

Returns
-------
None.

"""
for index, cause in enumerate(data):
# First cause annotation is placed in the middle of the problems arrow
# and each subsequent cause is plotted above or below it in succession.

# [<x pos>, [<y pos top>, <y pos bottom>]]
coords = [[0, [0, 0]],
[0.23, [0.5, -0.5]],
[-0.46, [-1, 1]],
[0.69, [1.5, -1.5]],
[-0.92, [-2, 2]],
[1.15, [2.5, -2.5]]]
if top:
cause_y += coords[index][1][0]
else:
cause_y += coords[index][1][1]
cause_x -= coords[index][0]

ax.annotate(cause, xy=(cause_x, cause_y),
horizontalalignment='center',
xytext=cause_xytext,
fontsize='9',
xycoords='data',
textcoords='offset fontsize',
arrowprops=dict(arrowstyle="->",
facecolor='black'))


def draw_body(data: dict):
"""
Place each section in its correct place by changing
the coordinates on each loop.

Parameters
----------
data : dict
The input data (can be list or tuple). ValueError is
raised if more than six arguments are passed.

Returns
-------
None.

"""
second_sections = []
third_sections = []
# Resize diagram to automatically scale in response to the number
# of problems in the input data.
if len(data) == 1 or len(data) == 2:
spine_length = (-2.1, 2)
head_pos = (2, 0)
tail_pos = ((-2.8, 0.8), (-2.8, -0.8), (-2.0, -0.01))
first_section = [1.6, 0.8]
elif len(data) == 3 or len(data) == 4:
spine_length = (-3.1, 3)
head_pos = (3, 0)
tail_pos = ((-3.8, 0.8), (-3.8, -0.8), (-3.0, -0.01))
first_section = [2.6, 1.8]
second_sections = [-0.4, -1.2]
else: # len(data) == 5 or 6
spine_length = (-4.1, 4)
head_pos = (4, 0)
tail_pos = ((-4.8, 0.8), (-4.8, -0.8), (-4.0, -0.01))
first_section = [3.5, 2.7]
second_sections = [1, 0.2]
third_sections = [-1.5, -2.3]

# Change the coordinates of the annotations on each loop.
for index, problem in enumerate(data.values()):
top_row = True
cause_arrow_y = 1.7
if index % 2 != 0: # Plot problems below the spine.
top_row = False
y_prob_angle = -16
cause_arrow_y = -1.7
else: # Plot problems above the spine.
y_prob_angle = 16
# Plot the 3 sections in pairs along the main spine.
if index in (0, 1):
prob_arrow_x = first_section[0]
cause_arrow_x = first_section[1]
elif index in (2, 3):
prob_arrow_x = second_sections[0]
cause_arrow_x = second_sections[1]
else:
prob_arrow_x = third_sections[0]
cause_arrow_x = third_sections[1]
if index > 5:
raise ValueError(f'Maximum number of problems is 6, you have entered '
f'{len(data)}')

# draw main spine
ax.plot(spine_length, [0, 0], color='tab:blue', linewidth=2)
# draw fish head
ax.text(head_pos[0] + 0.1, head_pos[1] - 0.05, 'PROBLEM', fontsize=10,
weight='bold', color='white')
semicircle = Wedge(head_pos, 1, 270, 90, fc='tab:blue')
ax.add_patch(semicircle)
# draw fishtail
triangle = Polygon(tail_pos, fc='tab:blue')
ax.add_patch(triangle)
# Pass each category name to the problems function as a string on each loop.
problems(list(data.keys())[index], prob_arrow_x, 0, -12, y_prob_angle)
# Start the cause function with the first annotation being plotted at
# the cause_arrow_x, cause_arrow_y coordinates.
causes(problem, cause_arrow_x, cause_arrow_y, top=top_row)


# Input data
categories = {
'Method': ['Time consumption', 'Cost', 'Procedures', 'Inefficient process',
'Sampling'],
'Machine': ['Faulty equipment', 'Compatibility'],
'Material': ['Poor-quality input', 'Raw materials', 'Supplier',
'Shortage'],
'Measurement': ['Calibration', 'Performance', 'Wrong measurements'],
'Environment': ['Bad conditions'],
'People': ['Lack of training', 'Managers', 'Labor shortage',
'Procedures', 'Sales strategy']
}

draw_body(categories)
plt.show()

[8]ページ先頭

©2009-2025 Movatter.jp