Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Avoid 1-tick or 0-tick log-scaled axis.#12865

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to ourterms of service andprivacy statement. We’ll occasionally send you account related emails.

Already on GitHub?Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes fromall commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletionsdoc/api/next_api_changes/2018-11-23-AL.rst
View file
Open in desktop
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,6 @@
Log-scaled axes avoid having zero or only one tick
``````````````````````````````````````````````````

When the default `LogLocator` would generate no ticks for an axis (e.g., an
axis with limits from 0.31 to 0.39) or only a single tick, it now instead falls
back on the linear `AutoLocator` to pick reasonable tick positions.
7 changes: 6 additions & 1 deletionlib/matplotlib/tests/test_ticker.py
View file
Open in desktop
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
import warnings

import numpy as np
from numpy.testing import assert_almost_equal
from numpy.testing import assert_almost_equal, assert_array_equal
import pytest

import matplotlib
Expand DownExpand Up@@ -179,6 +179,11 @@ def test_basic(self):
test_value = np.array([0.5, 1., 2., 4., 8., 16., 32., 64., 128., 256.])
assert_almost_equal(loc.tick_values(1, 100), test_value)

def test_switch_to_autolocator(self):
loc = mticker.LogLocator(subs="all")
assert_array_equal(loc.tick_values(0.45, 0.55),
[0.44, 0.46, 0.48, 0.5, 0.52, 0.54, 0.56])

def test_set_params(self):
"""
Create log locator with default value, base=10.0, subs=[1.0],
Expand Down
34 changes: 21 additions & 13 deletionslib/matplotlib/ticker.py
View file
Open in desktop
Original file line numberDiff line numberDiff line change
Expand Up@@ -2165,13 +2165,13 @@ def tick_values(self, vmin, vmax):
"log-scaled.")

_log.debug('vmin %s vmax %s', vmin, vmax)
vmin = math.log(vmin) / math.log(b)
vmax = math.log(vmax) / math.log(b)

if vmax < vmin:
vmin, vmax = vmax, vmin
log_vmin = math.log(vmin) / math.log(b)
log_vmax = math.log(vmax) / math.log(b)

numdec = math.floor(vmax) - math.ceil(vmin)
numdec = math.floor(log_vmax) - math.ceil(log_vmin)

if isinstance(self._subs, str):
_first = 2.0 if self._subs == 'auto' else 1.0
Expand All@@ -2195,32 +2195,40 @@ def tick_values(self, vmin, vmax):
while numdec // stride + 1 > numticks:
stride += 1

# Does subs include anything other than 1?
# Does subs include anything other than 1? Essentially a hack to know
# whether we're a major or a minor locator.
have_subs = len(subs) > 1 or (len(subs) == 1 and subs[0] != 1.0)

decades = np.arange(math.floor(vmin) - stride,
math.ceil(vmax) + 2 * stride, stride)
decades = np.arange(math.floor(log_vmin) - stride,
math.ceil(log_vmax) + 2 * stride, stride)

if hasattr(self, '_transform'):
ticklocs = self._transform.inverted().transform(decades)
if have_subs:
if stride == 1:
ticklocs = np.ravel(np.outer(subs, ticklocs))
else:
# no ticklocs if we have more than one decade
# between major ticks.
ticklocs = []
# No ticklocs if we have >1 decade between major ticks.
ticklocs = np.array([])
else:
if have_subs:
ticklocs = []
if stride == 1:
for decadeStart in b ** decades:
ticklocs.extend(subs * decadeStart)
ticklocs = np.concatenate(
[subs * decade_start for decade_start in b ** decades])
else:
ticklocs = np.array([])
else:
ticklocs = b ** decades

_log.debug('ticklocs %r', ticklocs)
return self.raise_if_exceeds(np.asarray(ticklocs))
if (len(subs) > 1
and stride == 1
and ((vmin <= ticklocs) & (ticklocs <= vmax)).sum() <= 1):
# If we're a minor locator *that expects at least two ticks per
# decade* and the major locator stride is 1 and there's no more
# than one minor tick, switch to AutoLocator.
return AutoLocator().tick_values(vmin, vmax)
return self.raise_if_exceeds(ticklocs)

def view_limits(self, vmin, vmax):
'Try to choose the view limits intelligently'
Expand Down

[8]ページ先頭

©2009-2025 Movatter.jp