Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Fix deprecations in examples#10385

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to ourterms of service andprivacy statement. We’ll occasionally send you account related emails.

Already on GitHub?Sign in to your account

Merged
tacaswell merged 3 commits intomatplotlib:masterfromQuLogic:example-deprecations
Feb 9, 2018
Merged
Show file tree
Hide file tree
Changes fromall commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 0 additions & 25 deletionsexamples/axes_grid1/demo_new_colorbar.py
View file
Open in desktop

This file was deleted.

View file
Open in desktop
Original file line numberDiff line numberDiff line change
Expand Up@@ -44,7 +44,7 @@ def ex3():
divider = make_axes_locatable(ax1)

ax2 = divider.new_horizontal("100%", pad=0.3, sharey=ax1)
ax2.tick_params(labelleft="off")
ax2.tick_params(labelleft=False)
fig.add_axes(ax2)

divider.add_auto_adjustable_area(use_axes=[ax1], pad=0.1,
Expand Down
View file
Open in desktop
Original file line numberDiff line numberDiff line change
Expand Up@@ -48,7 +48,8 @@ def normal_pdf(x, mean, var):
weights = weights_high + weights_low

# We'll also create a grey background into which the pixels will fade
greys = np.ones(weights.shape + (3,)) * 70
greys = np.empty(weights.shape + (3,), dtype=np.uint8)
greys.fill(70)

# First we'll plot these blobs using only ``imshow``.
vmax = np.abs(weights).max()
Expand Down
16 changes: 9 additions & 7 deletionsexamples/showcase/bachelors_degrees_by_gender.py
View file
Open in desktop
Original file line numberDiff line numberDiff line change
Expand Up@@ -10,12 +10,14 @@
as an alternative to a conventional legend.
"""

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.mlab import csv2rec
from matplotlib.cbook import get_sample_data

with get_sample_data('percent_bachelors_degrees_women_usa.csv') as fname:
gender_degree_data = csv2rec(fname)

fname = get_sample_data('percent_bachelors_degrees_women_usa.csv',
asfileobj=False)
gender_degree_data = np.genfromtxt(fname, delimiter=',', names=True)

# These are the colors that will be used in the plot
color_sequence = ['#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c',
Expand DownExpand Up@@ -59,8 +61,8 @@

# Remove the tick marks; they are unnecessary with the tick lines we just
# plotted.
plt.tick_params(axis='both', which='both', bottom='off', top='off',
labelbottom='on', left='off', right='off', labelleft='on')
plt.tick_params(axis='both', which='both', bottom=False, top=False,
labelbottom=True, left=False, right=False, labelleft=True)

# Now that the plot is prepared, it's time to actually plot the data!
# Note that I plotted the majors in order of the highest % in the final year.
Expand All@@ -80,9 +82,9 @@

for rank, column in enumerate(majors):
# Plot each line separately with its own color.
column_rec_name = column.replace('\n', '_').replace(' ', '_').lower()
column_rec_name = column.replace('\n', '_').replace(' ', '_')

line = plt.plot(gender_degree_data.year,
line = plt.plot(gender_degree_data['Year'],
gender_degree_data[column_rec_name],
lw=2.5,
color=color_sequence[rank])
Expand Down
2 changes: 1 addition & 1 deletionexamples/statistics/hist.py
View file
Open in desktop
Original file line numberDiff line numberDiff line change
Expand Up@@ -63,7 +63,7 @@
thispatch.set_facecolor(color)

# We can also normalize our inputs by the total number of counts
axs[1].hist(x, bins=n_bins,normed=True)
axs[1].hist(x, bins=n_bins,density=True)

# Now we format the y-axis to display percentage
axs[1].yaxis.set_major_formatter(PercentFormatter(xmax=1))
Expand Down
2 changes: 1 addition & 1 deletionexamples/subplots_axes_and_figures/broken_axis.py
View file
Open in desktop
Original file line numberDiff line numberDiff line change
Expand Up@@ -36,7 +36,7 @@
ax.spines['bottom'].set_visible(False)
ax2.spines['top'].set_visible(False)
ax.xaxis.tick_top()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax.tick_params(labeltop=False) # don't put tick labels at the top
ax2.xaxis.tick_bottom()

# This looks pretty good, and was fairly painless, but you can get that
Expand Down
14 changes: 9 additions & 5 deletionsexamples/ticks_and_spines/date_index_formatter.py
View file
Open in desktop
Original file line numberDiff line numberDiff line change
Expand Up@@ -12,15 +12,19 @@
"""

from __future__ import print_function

import numpy as np
from matplotlib.mlab import csv2rec

import matplotlib.pyplot as plt
import matplotlib.cbook as cbook
from matplotlib.dates import bytespdate2num, num2date
from matplotlib.ticker import Formatter


datafile = cbook.get_sample_data('msft.csv', asfileobj=False)
print('loading %s' % datafile)
r = csv2rec(datafile)[-40:]
msft_data = np.genfromtxt(datafile, delimiter=',', names=True,
converters={0: bytespdate2num('%d-%b-%y')})[-40:]


class MyFormatter(Formatter):
Expand All@@ -34,12 +38,12 @@ def __call__(self, x, pos=0):
if ind >= len(self.dates) or ind < 0:
return ''

return self.dates[ind].strftime(self.fmt)
returnnum2date(self.dates[ind]).strftime(self.fmt)

formatter = MyFormatter(r.date)
formatter = MyFormatter(msft_data['Date'])

fig, ax = plt.subplots()
ax.xaxis.set_major_formatter(formatter)
ax.plot(np.arange(len(r)),r.close, 'o-')
ax.plot(np.arange(len(msft_data)),msft_data['Close'], 'o-')
fig.autofmt_xdate()
plt.show()
7 changes: 5 additions & 2 deletionslib/matplotlib/pyplot.py
View file
Open in desktop
Original file line numberDiff line numberDiff line change
Expand Up@@ -2411,8 +2411,11 @@ def plotfile(fname, cols=(0,), plotfuncs=None,

if plotfuncs is None:
plotfuncs = dict()
r = mlab.csv2rec(fname, comments=comments, skiprows=skiprows,
checkrows=checkrows, delimiter=delimiter, names=names)
from matplotlib.cbook import mplDeprecation
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others.Learn more.

Should this whole method be deprecated since it depends oncsv2rec?

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others.Learn more.

Yes, and point people at pandas.

Copy link
MemberAuthor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others.Learn more.

You want to deprecateplt.plotfile for Pandas? Probably should be an independent PR.

dstansby and tacaswell reacted with thumbs up emoji
with warnings.catch_warnings():
warnings.simplefilter('ignore', mplDeprecation)
r = mlab.csv2rec(fname, comments=comments, skiprows=skiprows,
checkrows=checkrows, delimiter=delimiter, names=names)

def getname_val(identifier):
'return the name and column data for identifier'
Expand Down
2 changes: 1 addition & 1 deletiontutorials/introductory/pyplot.py
View file
Open in desktop
Original file line numberDiff line numberDiff line change
Expand Up@@ -333,7 +333,7 @@ def f(t):
x = mu + sigma * np.random.randn(10000)

# the histogram of the data
n, bins, patches = plt.hist(x, 50,normed=1, facecolor='g', alpha=0.75)
n, bins, patches = plt.hist(x, 50,density=1, facecolor='g', alpha=0.75)


plt.xlabel('Smarts')
Expand Down

[8]ページ先頭

©2009-2025 Movatter.jp