Uh oh!
There was an error while loading.Please reload this page.
- Notifications
You must be signed in to change notification settings - Fork7.9k
Closed
Labels
Milestone
Description
Bug report
Bug summary
Histogram missing in Matplotlib 2.1.0. See the following figures, one is from 2.1.0 and the other is from 2.0.2.
Code for reproduction
This code is exactly the same code we are using except the data is changed to random one. I suppose it will be minimal enough?
#!/usr/bin/env python3importnumpyasnpimportmatplotlibimportmatplotlib.pyplotaspltimportmatplotlib.tickerastickerimportcollectionsdefplot_figure(distribution):percentile= [95,99]percentile_color='yg'mean_color='c'bins=100legend_handle= []legend_title= []fig, (ax0,ax1)=plt.subplots(2,sharex=True)fig.subplots_adjust(hspace=0)mu,sigma=100,15xs_downstream=mu+sigma*np.random.randn(10000)xs_upstream=mu+sigma*np.random.randn(10000)xmin=min(np.min(xs_downstream),np.min(xs_upstream))xmax=max(np.max(xs_downstream),np.max(xs_upstream))hist0=ax0.hist(xs_downstream,bins=bins,range=(xmin,xmax),color='red',label='{} workload with Proxy'.format(distribution.capitalize()))handles,labels=ax0.get_legend_handles_labels()line=ax0.axvline(x=np.mean(xs_downstream),color=mean_color,linewidth=1)legend_title.append('Mean')legend_handle.append(line)forpercent,colorinzip(percentile,percentile_color):line=ax0.axvline(x=xs_downstream[int(percent/100*len(xs_downstream))],color=color,linewidth=1)legend_title.append('{}th percentile'.format(percent))legend_handle.append(line)ax0.set_yscale('log')legend_title+=labelslegend_handle+=handleshist1=ax1.hist(xs_upstream,bins=bins,range=(xmin,xmax),color='blue',label='{} workload without Proxy'.format(distribution.capitalize()))handles,labels=ax1.get_legend_handles_labels()legend_title+=labelslegend_handle+=handlesax1.axvline(x=np.mean(xs_upstream),color=mean_color,linewidth=1)forpercent,colorinzip(percentile,percentile_color):ax1.axvline(x=xs_upstream[int(percent/100*len(xs_upstream))],color=color,linewidth=1)ax1.set_yscale('log')ax0.legend(legend_handle,legend_title)ax1.set_xlabel('latency (ms)')fig.savefig('latency-{}.pdf'.format(distribution))defmain():plot_figure('zipf')plot_figure('uniform')if__name__=='__main__':main()
Actual outcome
Expected outcome
Works well in 2.0.2.
Matplotlib version
- Operating system: Both macOS High Sierra and Ubuntu 17.10
- Matplotlib version: 2.1.0
- Matplotlib backend (
print(matplotlib.get_backend())
):MacOSX
- Python version:
3.6.3
- Jupyter version (if applicable):
- Other libraries:
Installed usingpip3
Thanks!