Uh oh!
There was an error while loading.Please reload this page.
- Notifications
You must be signed in to change notification settings - Fork7.9k
Open
Description
Bug report
Bug summary
Generatingnp.random.randn(1000)
values, visualizing them withplt.hist()
. Works fine with Numpy.
When I replace Numpy with tensorflow.experimental.numpy, Matplotlib 3.3.4 fails to display the histogram correctly. Matplotlib 3.2.2 works fine.
Code for reproduction
importmatplotlib.pyplotaspltimportnumpyasnpimporttensorflowastfimporttensorflow.experimental.numpyastnp# bad imagelabels1=15+2*tnp.random.randn(1000)_=plt.hist(labels1)# good imagelabels2=15+2*np.random.randn(1000)_=plt.hist(labels2)
Actual outcome
Expected outcome
Matplotlib version
- Operating system: Windows 10
- Matplotlib version (
import matplotlib; print(matplotlib.__version__)
): 3.3.4 - Matplotlib backend (
print(matplotlib.get_backend())
): module://ipykernel.pylab.backend_inline - Python version: 3.8.7
- Jupyter version (if applicable): see below
- Other libraries: see below
TensorFlow 2.4.1
jupyter --versionjupyter core : 4.7.0jupyter-notebook : 6.1.6qtconsole : 5.0.1ipython : 7.20.0ipykernel : 5.4.2jupyter client : 6.1.7jupyter lab : not installednbconvert : 6.0.7ipywidgets : 7.6.3nbformat : 5.0.8traitlets : 5.0.5
Python installed from python.org as an exe installer. Everything else ispip install --user
Bug opened with TensorFlow on this same issue: