Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commitf1a1d60

Browse files
committed
finally got docs compiling
1 parent3394535 commitf1a1d60

File tree

1 file changed

+17
-11
lines changed

1 file changed

+17
-11
lines changed

‎lib/matplotlib/bezier.py

Lines changed: 17 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -290,37 +290,43 @@ def arc_area(self):
290290
&\hspace{1em}- \left( \sum_{j=0}^n P_j^{(1)} b_{j,n} \right)
291291
\left( n \sum_{k=0}^{n-1} (P_{k+1}^{(0)} -
292292
P_{k}^{(0)}) b_{j,n} \right)
293-
dt
293+
dt,
294294
295-
Where :math:`b_{\nu, n}(t) = {n \choose \nu} t^\nu {(1 - t)}^{n-\nu}`
295+
where :math:`b_{\nu, n}(t) = {n \choose \nu} t^\nu {(1 - t)}^{n-\nu}`
296296
is the :math:`\nu`'th Bernstein polynomial of degree :math:`n`.
297297
298298
Grouping :math:`t^l(1-t)^m` terms together for each :math:`l`,
299299
:math:`m`, we get that the integrand becomes
300300
301301
.. math::
302302
303-
&\sum_{j=0}^n \sum_{k=0}^{n-1}
303+
\sum_{j=0}^n \sum_{k=0}^{n-1}
304304
{n \choose j} {{n - 1} \choose k}
305-
[P_j^{(0)} (P_{k+1}^{(1)} - P_{k}^{(1)})
306-
- P_j^{(1)} (P_{k+1}^{(0)} - P_{k}^{(0)})]
307-
t^{j + k} {(1 - t)}^{2n - 1 - j - k}
308-
\\
309-
&= \sum_{j=0}^n \sum_{k=0}^{n-1}
305+
&\left[P_j^{(0)} (P_{k+1}^{(1)} - P_{k}^{(1)})
306+
- P_j^{(1)} (P_{k+1}^{(0)} - P_{k}^{(0)})\right] \\
307+
&\hspace{1em}\times{}t^{j + k} {(1 - t)}^{2n - 1 - j - k}
308+
309+
or just
310+
311+
.. math::
312+
313+
\sum_{j=0}^n \sum_{k=0}^{n-1}
310314
\frac{{n \choose j} {{n - 1} \choose k}}
311315
{{{2n - 1} \choose {j+k}}}
312316
[P_j^{(0)} (P_{k+1}^{(1)} - P_{k}^{(1)})
313317
- P_j^{(1)} (P_{k+1}^{(0)} - P_{k}^{(0)})]
314-
b_{j+k,2n-1}(t)
318+
b_{j+k,2n-1}(t).
315319
316320
Interchanging sum and integral, and using the fact that :math:`\int_0^1
317321
b_{\nu, n}(t) dt = \frac{1}{n + 1}`, we conclude that the
318-
original integral(:math:`\frac{1}{2}\int_0^1 B(t) \cdot n(t) dt`) can
322+
original integral can
319323
simply be written as
320324
321325
.. math::
322326
323-
\frac{1}{4}\sum_{j=0}^n \sum_{k=0}^{n-1}
327+
\frac{1}{2}&\int_0^1 B(t) \cdot n(t) dt
328+
\\
329+
&= \frac{1}{4}\sum_{j=0}^n \sum_{k=0}^{n-1}
324330
\frac{{n \choose j} {{n - 1} \choose k}}
325331
{{{2n - 1} \choose {j+k}}}
326332
[P_j^{(0)} (P_{k+1}^{(1)} - P_{k}^{(1)})

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp