Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commitb2683a9

Browse files
committed
Resolving comments for getting_started.py
1 parentaf7177c commitb2683a9

File tree

1 file changed

+53
-45
lines changed

1 file changed

+53
-45
lines changed

‎tutorials/introductory/getting_started.py

Lines changed: 53 additions & 45 deletions
Original file line numberDiff line numberDiff line change
@@ -32,8 +32,8 @@
3232
# | Explicit, Object Oriented | Implicit, ``pyplot`` |
3333
# | Programming (OOP) | |
3434
# +====================================+====================================+
35-
# | Users explicitly create and manage |Automatically manages Figure and |
36-
# | all Figure elements. |Axes. |
35+
# | Users explicitly create and manage |The Matplotlib library implicitly |
36+
# | all Figure elements. |manages Figure and Axes. |
3737
# +------------------------------------+------------------------------------+
3838
# | Useful for repeated code use, | Helpful for quickly graphing data |
3939
# | generalization, robust | when using interactive |
@@ -55,7 +55,7 @@
5555
#
5656
# Implicit programming with ``pyplot`` is simpler. It is helpful for basic
5757
# plots and for interactive environments, such as Jupyter Notebooks. Users
58-
# familiar with MATLAB orwish to have Matplotlib create and manage parts of
58+
# familiar with MATLAB orwishing to have Matplotlib create and manage parts of
5959
# the visualization in state-based programming benefit from using ``pyplot``.
6060
# Using implicit programming acts as a convenient shortcut for generating
6161
# visualizations. New users to Matplotlib may experience difficulty
@@ -75,20 +75,21 @@
7575
# +====================================+====================================+
7676
# | :: | :: |
7777
# | | |
78-
# | fig, ax = plt.subplots() | plt.plot([1, 2, 3],[1, 2, 3]) |
79-
# | ax.plot([1, 2, 3],[1, 2, 3]) | |
78+
# | fig, ax = plt.subplots() | plt.plot([1, 2, 3],[1, 2, 3]) |
79+
# | ax.plot([1, 2, 3],[1, 2, 3]) | |
8080
# | | |
8181
# +------------------------------------+------------------------------------+
8282
# | `.pyplot.subplots` generates a | :mod:`matplotlib.pyplot` creates |
8383
# | `~.figure.Figure` and one or | implicit Figure and Axes if |
8484
# | more `~.axes.Axes` explicitly. | there are no pre-existing |
8585
# | `.Axes.plot` plots the data. | elements and `.pyplot.plot` plots |
86-
# | | the data. |
86+
# | | the data. This also plots over any |
87+
# | | existing Figure if applicable. |
8788
# +------------------------------------+------------------------------------+
8889
# | .. plot:: | .. plot:: |
8990
# | | |
90-
# | fig, ax = plt.subplots() | plt.plot([1,2,3],[1,2,3]) |
91-
# | ax.plot([1, 2, 3],[1, 2, 3]) | |
91+
# | fig, ax = plt.subplots() | plt.plot([1, 2,3],[1, 2,3]) |
92+
# | ax.plot([1, 2, 3],[1, 2, 3]) | |
9293
# | | |
9394
# +------------------------------------+------------------------------------+
9495
#
@@ -103,7 +104,7 @@
103104
# higher* is required. Depending on your operating system, Python may already
104105
# be installed on your machine.
105106
#
106-
# InstallingMaptlotlib is required in order to generate graphs with the
107+
# InstallingMatplotlib is required in order to generate graphs with the
107108
# library. Install Matplotlib for your own development environment manually or
108109
# use a third-party package distribution.
109110
#
@@ -140,7 +141,7 @@
140141
#
141142
# - The ``pyplot`` module in Matplotlib is a collection of functions. The
142143
# module's functions create, manage, and manipulate the current Figure and
143-
# the plotting area. Theabbreviation as``plt`` is the standard shortcut.
144+
# the plotting area. The ``plt`` abbreviation is the standard shortcut.
144145
#
145146

146147
importnumpyasnp
@@ -149,12 +150,14 @@
149150

150151
##############################################################################
151152
#
152-
# - NumPy is a common scientific Python library that benefits users with
153-
#additional tools for manipulating data.
153+
# -`NumPy<https://numpy.org/doc/stable/index.html#>`_is a common scientific
154+
#Python library that benefits users working with numerical data.
154155
# - The ``functools`` module helps manage functions that act on or return
155156
# other functions. The `Pie Chart Examples`_ section note contains more
156157
# information about the purpose of this module.
157158
#
159+
#
160+
#
158161
# Two Approaches for Creating Graphs
159162
# ----------------------------------
160163
#
@@ -227,18 +230,19 @@
227230
# Explicit: Object Oriented Programming (OOP)
228231
# --------------------------------------------
229232
#
230-
# Explicit programming for Matplotlib involves calling the method ``subplots``
231-
# in the ``pyplot`` module once. This unpacks a group of an explicit Figure and
232-
# Axes. More than one Axes is configurable; however, each Axes only corresponds
233-
# to a single Figure.
233+
# Explicit programming for Matplotlib involves calling the function
234+
# `pyploy.subplots` in the ``pyplot`` module once. This returns a group of an
235+
# explicit Figure and Axes to be unpacked as part of variable assignment. More
236+
# than one Axes is configurable; however, each Axes only corresponds to a
237+
# single Figure.
234238
#
235239
# Each Axes has its own methods to graph data. In addition, each Axes
236-
# also uses separate methods to create and manageparts of a Figure. These
237-
# methods are different from those of the implicit programming approach.
240+
# also uses separate methods to create and manageobjects within a Figure.
241+
#Thesemethods are different from those of the implicit programming approach.
238242

239243
# Explicit programming with OOP
240244

241-
# Assigning sample data tolabeledvariables.
245+
# Assigning sample data to variables.
242246
x=months
243247
y1=income
244248
y2=chk_acct_09
@@ -266,24 +270,24 @@
266270

267271
##############################################################################
268272
#
269-
# The module ``pyplot`` for theOOP exampleunpacks the Figure and Axes.
270-
# This convention uses ``plt.subplots()`` and defaults to one Figure, ``fig``,
271-
# and one Axes, ``ax``. The variable names are common shorthand terms. Any
272-
# naming conventions also work.
273+
# The module ``pyplot`` for theexplicit exampleuses a function that returns
274+
#the Figure and Axes.This convention uses ``plt.subplots()``. It defaults
275+
#to one Figure, ``fig``,and one Axes, ``ax``. The variable names are common
276+
#shorthand terms and anynaming conventions also work.
273277
#
274278
# The `Configuration`_ section below contains additional information about
275279
# manipulating visuals, multiple visualizations, and other modifications.
276280
#
277281
# Using explicit programming allows for ``fig`` and ``ax`` to use separate
278-
# methods tomanipulatethe visualization. Specific Figures and Axes manage
279-
# data components with their own respective methods.
282+
# methods tomanage objects withinthe visualization. Specific Figures and
283+
#Axes managedata components with their own respective methods.
280284
#
281285
#
282286
# Implicit: ``pyplot``
283287
# --------------------
284288
#
285289
# Implicit programming for Matplotlib centers around using the ``pyplot``
286-
# module. The moduleautomatically generates Figure and Axes. Methods and
290+
# module. The moduleimplicitly generates the Figure and Axes. Methods and
287291
# functions within the module take incoming data as arguments. Additional parts
288292
# of the Figure are also available through the module methods.
289293

@@ -307,7 +311,7 @@
307311

308312
##############################################################################
309313
#
310-
# In the example above, the ``pyplot`` module contains its ownmethods of
314+
# In the example above, the ``pyplot`` module contains its ownfunctions of
311315
# actionable tasks for the data. The ``plt.plot`` plots data as a line graph
312316
# with various keyword arguments as customizable options. The module also
313317
# includes other methods for generating parts of the visualization. These parts
@@ -364,16 +368,20 @@
364368
#
365369
# :class:`~matplotlib.axes.Axes`
366370
#
367-
# Axes are subplots within the Figure. They containFigure elements and
371+
# Axes are subplots within the Figure. They containMatplotlib objects and
368372
# are responsible for plotting and configuring additional details. Each
369373
# Figure can contain multiple Axes, but each Axes is specific to one
370374
# Figure.
371375
#
372376
# In a Figure, each Axes contains any number of visual elements. Axes are
373377
# configurable for more than one type of visualization of data. From the
374378
# `Plotting`_ section above, the Axes in both explicit and implicit strategies
375-
# contain multiple types of visualizations of data on a single Axes. Each of
376-
# these types are specific to the Axes they are in.
379+
# contain multiple types of visualizations of data on a single Axes.
380+
381+
# Each of these types are specific to the Axes they are in. In the example, the
382+
# two plots each have one Axes. These Axes each have multiple plot lines. The
383+
# lines as objects are not shared between the two plots even though the data is
384+
# shared.
377385
#
378386
# Matplotlib Axes also integrate with other Python libraries. In Axes-based
379387
# interfaces, other libraries take an Axes object as input. Libraries such as
@@ -472,8 +480,8 @@
472480
# | | :doc:`/tutorials/text/annotations` |
473481
# +------------------------------+--------------------------------------------+
474482
#
475-
# For complete information about available methods forArtists, refer to the
476-
# table below.
483+
# For complete information about available methods forcreating new Artists,
484+
#refer to thetable below.
477485
#
478486
# +------------------------------------+------------------------------------+
479487
# | Explicit | Implicit |
@@ -594,7 +602,7 @@ def autopct_format(percent, group):
594602
#
595603
# The pie chart below adds configurations with keyword arguments for
596604
# ``explode``, ``autopct``, ``startangle``, and ``shadow``. These keyword
597-
# arguments help tomanipulate the Artists.
605+
# arguments help todefine the display of Artists.
598606

599607
# Explicit
600608

@@ -603,7 +611,7 @@ def autopct_format(percent, group):
603611
# The explode keyword argument uses explode variable data to separate
604612
# respective wedges from center.
605613
# The autopct keyword argument takes formatting strings and functions to
606-
# generate text within wedge. '%1.1f%%' is the string formatter.
614+
# generate text withineachwedge. '%1.1f%%' is the string formatter.
607615
# The startangle keyword argument changes where first wedge spans. Angles start
608616
# at 0 degrees on X-axis and move counterclockwise.
609617
# The shadow keyword argument toggles a shadow on the visual.
@@ -676,8 +684,8 @@ def autopct_format(percent, group):
676684
ax.set_title('Average Monthly Income Expenses')
677685
ax.axis('equal')
678686

679-
# The Figure method tight_layout()manages space between all Artists to
680-
# maximize visiblity on Figure. This method also contains various
687+
# The Figure method tight_layout()adjusts spacing between all Artists to
688+
# maximize visiblity ontheFigure. This method also contains various
681689
# parameters for configuration.
682690
fig.tight_layout()
683691

@@ -759,18 +767,18 @@ def autopct_format(percent, group):
759767
# the explicit approach refers to an explicitly generated Axes after creating
760768
# both the Figure and Axes.
761769
#
762-
# In the unpacking process,numerous Axes are assigned to a single variable.
770+
# In the unpacking process,multiple Axes are assigned to a single variable.
763771
# To reference a specific Axes, indexing the location of the respective Axes
764772
# as a matrix through the single variable works as well.
765773
#
766774
# The code below demonstrates indexing multiple Axes::
767775
#
768-
# fig, ax = plt.subplots(2,2)
776+
# fig, ax = plt.subplots(2,2)
769777
#
770-
# ax[0,0].bar([1,2,3],[1,2,3])
771-
# ax[0,1].plot([3,2,1],[3,2,1])
778+
# ax[0,0].bar([1, 2,3],[1, 2,3])
779+
# ax[0,1].plot([3, 2,1],[3, 2,1])
772780
# ax[1,0].hist(hist_data)
773-
# ax[1,1].imshow([[1,2], [2,1]])
781+
# ax[1,1].imshow([[1,2], [2,1]])
774782
#
775783
#
776784
# The method `matplotlib.figure.Figure.subplot_mosaic` also generates Axes in
@@ -783,10 +791,10 @@ def autopct_format(percent, group):
783791
# ax_dict = fig.subplot_mosaic([['bar', 'plot'],
784792
# ['hist', 'image']])
785793
#
786-
# ax_dict['bar'].bar([1,2,3],[1,2,3])
787-
# ax_dict['plot'].plot([3,2,1],[3,2,1])
794+
# ax_dict['bar'].bar([1, 2,3],[1, 2,3])
795+
# ax_dict['plot'].plot([3, 2,1],[3, 2,1])
788796
# ax_dict['hist'].hist(hist_data)
789-
# ax_dict['image'].imshow([[1,2], [2,1]])
797+
# ax_dict['image'].imshow([[1,2], [2,1]])
790798
#
791799
# Implicit
792800
# ^^^^^^^^
@@ -816,7 +824,7 @@ def my_plotter(ax, data1, data2, param_dict):
816824
X data
817825
data2 : array
818826
Y data
819-
param_dict : dict()
827+
param_dict : dict
820828
Dictionary of keyword arguments passes to method
821829
822830
Returns

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp