@@ -3352,7 +3352,7 @@ def n_components(self):
3352
3352
3353
3353
@property
3354
3354
def norms (self ):
3355
- """The individual norms held by this `MultiNorm`"""
3355
+ """The individual norms held by this `MultiNorm`. """
3356
3356
return self ._norms
3357
3357
3358
3358
@property
@@ -3404,15 +3404,15 @@ def _changed(self):
3404
3404
"""
3405
3405
self .callbacks .process ('changed' )
3406
3406
3407
- def __call__ (self ,value ,clip = None ,structured_output = None ):
3407
+ def __call__ (self ,values ,clip = None ,structured_output = None ):
3408
3408
"""
3409
3409
Normalize the data and return the normalized data.
3410
3410
3411
- Each component of the input isassigned to the constituent norm.
3411
+ Each component of the input isnormalized via the constituent norm.
3412
3412
3413
3413
Parameters
3414
3414
----------
3415
- value : array-like
3415
+ values : array-like
3416
3416
Data to normalize, as tuple, scalar array or structured array.
3417
3417
3418
3418
- If tuple, must be of length `n_components`
@@ -3439,44 +3439,44 @@ def __call__(self, value, clip=None, structured_output=None):
3439
3439
Notes
3440
3440
-----
3441
3441
If not already initialized, ``self.vmin`` and ``self.vmax`` are
3442
- initialized using ``self.autoscale_None(value )``.
3442
+ initialized using ``self.autoscale_None(values )``.
3443
3443
"""
3444
3444
if clip is None :
3445
3445
clip = self .clip
3446
3446
elif not np .iterable (clip ):
3447
3447
clip = [clip ]* self .n_components
3448
3448
3449
3449
if structured_output is None :
3450
- if isinstance (value ,np .ndarray )and value .dtype .fields is not None :
3450
+ if isinstance (values ,np .ndarray )and values .dtype .fields is not None :
3451
3451
structured_output = True
3452
3452
else :
3453
3453
structured_output = False
3454
3454
3455
- value = self ._iterable_components_in_data (value ,self .n_components )
3455
+ values = self ._iterable_components_in_data (values ,self .n_components )
3456
3456
3457
- result = tuple (n (v ,clip = c )for n ,v ,c in zip (self .norms ,value ,clip ))
3457
+ result = tuple (n (v ,clip = c )for n ,v ,c in zip (self .norms ,values ,clip ))
3458
3458
3459
3459
if structured_output :
3460
3460
result = self ._ensure_multicomponent_data (result ,self .n_components )
3461
3461
3462
3462
return result
3463
3463
3464
- def inverse (self ,value ):
3464
+ def inverse (self ,values ):
3465
3465
"""
3466
- Map the normalizedvalue (i.e., index in the colormap) back toimage datavalue .
3466
+ Map the normalizedvalues (i.e., index in the colormap) back to datavalues .
3467
3467
3468
3468
Parameters
3469
3469
----------
3470
- value
3471
- Normalizedvalue , as tuple, scalar array or structured array.
3470
+ values
3471
+ Normalizedvalues , as tuple, scalar array or structured array.
3472
3472
3473
3473
- If tuple, must be of length `n_components`
3474
3474
- If scalar array, the first axis must be of length `n_components`
3475
3475
- If structured array, must have `n_components` fields.
3476
3476
3477
3477
"""
3478
- value = self ._iterable_components_in_data (value ,self .n_components )
3479
- result = [n .inverse (v )for n ,v in zip (self .norms ,value )]
3478
+ values = self ._iterable_components_in_data (values ,self .n_components )
3479
+ result = [n .inverse (v )for n ,v in zip (self .norms ,values )]
3480
3480
return result
3481
3481
3482
3482
def autoscale (self ,A ):
@@ -3487,8 +3487,8 @@ def autoscale(self, A):
3487
3487
Parameters
3488
3488
----------
3489
3489
A
3490
- Data, must be of length `n_components` or be a structuredarray or scalar
3491
- with `n_components` fields.
3490
+ Data, must be of length `n_components` or be a structuredscalar or
3491
+ structured array with `n_components` fields.
3492
3492
"""
3493
3493
with self .callbacks .blocked ():
3494
3494
# Pause callbacks while we are updating so we only get
@@ -3561,7 +3561,7 @@ def _ensure_multicomponent_data(data, n_components):
3561
3561
Parameters
3562
3562
----------
3563
3563
n_components : int
3564
- - number of omponents in the data
3564
+ Number of omponents in the data.
3565
3565
data : np.ndarray, PIL.Image or None
3566
3566
3567
3567
Returns