|
5 | 5 | importitertools
|
6 | 6 | fromdistutils.versionimportLooseVersionasV
|
7 | 7 |
|
8 |
| -fromnose.toolsimportassert_raises,assert_equal,assert_true |
| 8 | +fromnose.toolsimport (assert_raises,assert_equal,assert_true,assert_false |
| 9 | +raises) |
9 | 10 |
|
10 | 11 | importnumpyasnp
|
11 | 12 | fromnumpy.testing.utilsimportassert_array_equal,assert_array_almost_equal
|
@@ -163,6 +164,182 @@ def test_Normalize():
|
163 | 164 | _mask_tester(norm,vals)
|
164 | 165 |
|
165 | 166 |
|
| 167 | +class_base_NormMixin(object): |
| 168 | +deftest_call(self): |
| 169 | +normed_vals=self.norm(self.vals) |
| 170 | +assert_array_almost_equal(normed_vals,self.expected) |
| 171 | + |
| 172 | +deftest_inverse(self): |
| 173 | +_inverse_tester(self.norm,self.vals) |
| 174 | + |
| 175 | +deftest_scalar(self): |
| 176 | +_scalar_tester(self.norm,self.vals) |
| 177 | + |
| 178 | +deftest_mask(self): |
| 179 | +_mask_tester(self.norm,self.vals) |
| 180 | + |
| 181 | +deftest_autoscale(self): |
| 182 | +norm=self.normclass() |
| 183 | +norm.autoscale([10,20,30,40]) |
| 184 | +assert_equal(norm.vmin,10.) |
| 185 | +assert_equal(norm.vmax,40.) |
| 186 | + |
| 187 | +deftest_autoscale_None_vmin(self): |
| 188 | +norm=self.normclass(vmin=0,vmax=None) |
| 189 | +norm.autoscale_None([1,2,3,4,5]) |
| 190 | +assert_equal(norm.vmin,0.) |
| 191 | +assert_equal(norm.vmax,5.) |
| 192 | + |
| 193 | +deftest_autoscale_None_vmax(self): |
| 194 | +norm=self.normclass(vmin=None,vmax=10) |
| 195 | +norm.autoscale_None([1,2,3,4,5]) |
| 196 | +assert_equal(norm.vmin,1.) |
| 197 | +assert_equal(norm.vmax,10.) |
| 198 | + |
| 199 | +deftest_scale(self): |
| 200 | +norm=self.normclass() |
| 201 | +assert_false(norm.scaled()) |
| 202 | + |
| 203 | +norm([1,2,3,4]) |
| 204 | +assert_true(norm.scaled()) |
| 205 | + |
| 206 | +deftest_process_value_scalar(self): |
| 207 | +res,is_scalar=mcolors.Normalize.process_value(5) |
| 208 | +assert_true(is_scalar) |
| 209 | +assert_array_equal(res,np.array([5.])) |
| 210 | + |
| 211 | +deftest_process_value_list(self): |
| 212 | +res,is_scalar=mcolors.Normalize.process_value([5,10]) |
| 213 | +assert_false(is_scalar) |
| 214 | +assert_array_equal(res,np.array([5.,10.])) |
| 215 | + |
| 216 | +deftest_process_value_tuple(self): |
| 217 | +res,is_scalar=mcolors.Normalize.process_value((5,10)) |
| 218 | +assert_false(is_scalar) |
| 219 | +assert_array_equal(res,np.array([5.,10.])) |
| 220 | + |
| 221 | +deftest_process_value_array(self): |
| 222 | +res,is_scalar=mcolors.Normalize.process_value(np.array([5,10])) |
| 223 | +assert_false(is_scalar) |
| 224 | +assert_array_equal(res,np.array([5.,10.])) |
| 225 | + |
| 226 | + |
| 227 | +classtest_OffsetNorm_Even(_base_NormMixin): |
| 228 | +defsetup(self): |
| 229 | +self.normclass=mcolors.OffsetNorm |
| 230 | +self.norm=self.normclass(vmin=-1,vcenter=0,vmax=4) |
| 231 | +self.vals=np.array([-1.0,-0.5,0.0,1.0,2.0,3.0,4.0]) |
| 232 | +self.expected=np.array([0.0,0.25,0.5,0.625,0.75,0.875,1.0]) |
| 233 | + |
| 234 | + |
| 235 | +classtest_OffsetNorm_Odd(_base_NormMixin): |
| 236 | +defsetup(self): |
| 237 | +self.normclass=mcolors.OffsetNorm |
| 238 | +self.norm=self.normclass(vmin=-2,vcenter=0,vmax=5) |
| 239 | +self.vals=np.array([-2.0,-1.0,0.0,1.0,2.0,3.0,4.0,5.0]) |
| 240 | +self.expected=np.array([0.0,0.25,0.5,0.6,0.7,0.8,0.9,1.0]) |
| 241 | + |
| 242 | + |
| 243 | +classtest_OffsetNorm_AllNegative(_base_NormMixin): |
| 244 | +defsetup(self): |
| 245 | +self.normclass=mcolors.OffsetNorm |
| 246 | +self.norm=self.normclass(vmin=-10,vcenter=-8,vmax=-2) |
| 247 | +self.vals=np.array([-10.,-9.,-8.,-6.,-4.,-2.]) |
| 248 | +self.expected=np.array([0.0,0.25,0.5,0.666667,0.833333,1.0]) |
| 249 | + |
| 250 | + |
| 251 | +classtest_OffsetNorm_AllPositive(_base_NormMixin): |
| 252 | +defsetup(self): |
| 253 | +self.normclass=mcolors.OffsetNorm |
| 254 | +self.norm=self.normclass(vmin=0,vcenter=3,vmax=9) |
| 255 | +self.vals=np.array([0.,1.5,3.,4.5,6.0,7.5,9.]) |
| 256 | +self.expected=np.array([0.0,0.25,0.5,0.625,0.75,0.875,1.0]) |
| 257 | + |
| 258 | + |
| 259 | +classtest_OffsetNorm_NoVs(_base_NormMixin): |
| 260 | +defsetup(self): |
| 261 | +self.normclass=mcolors.OffsetNorm |
| 262 | +self.norm=self.normclass(vmin=None,vcenter=None,vmax=None) |
| 263 | +self.vals=np.array([-2.0,-1.0,0.0,1.0,2.0,3.0,4.0]) |
| 264 | +self.expected=np.array([0.,0.16666667,0.33333333, |
| 265 | +0.5,0.66666667,0.83333333,1.0]) |
| 266 | +self.expected_vmin=-2 |
| 267 | +self.expected_vcenter=1 |
| 268 | +self.expected_vmax=4 |
| 269 | + |
| 270 | +deftest_vmin(self): |
| 271 | +assert_true(self.norm.vminisNone) |
| 272 | +self.norm(self.vals) |
| 273 | +assert_equal(self.norm.vmin,self.expected_vmin) |
| 274 | + |
| 275 | +deftest_vcenter(self): |
| 276 | +assert_true(self.norm.vcenterisNone) |
| 277 | +self.norm(self.vals) |
| 278 | +assert_equal(self.norm.vcenter,self.expected_vcenter) |
| 279 | + |
| 280 | +deftest_vmax(self): |
| 281 | +assert_true(self.norm.vmaxisNone) |
| 282 | +self.norm(self.vals) |
| 283 | +assert_equal(self.norm.vmax,self.expected_vmax) |
| 284 | + |
| 285 | + |
| 286 | +classtest_OffsetNorm_VminEqualsVcenter(_base_NormMixin): |
| 287 | +defsetup(self): |
| 288 | +self.normclass=mcolors.OffsetNorm |
| 289 | +self.norm=self.normclass(vmin=-2,vcenter=-2,vmax=2) |
| 290 | +self.vals=np.array([-2.0,-1.0,0.0,1.0,2.0]) |
| 291 | +self.expected=np.array([0.5,0.625,0.75,0.875,1.0]) |
| 292 | + |
| 293 | + |
| 294 | +classtest_OffsetNorm_VmaxEqualsVcenter(_base_NormMixin): |
| 295 | +defsetup(self): |
| 296 | +self.normclass=mcolors.OffsetNorm |
| 297 | +self.norm=self.normclass(vmin=-2,vcenter=2,vmax=2) |
| 298 | +self.vals=np.array([-2.0,-1.0,0.0,1.0,2.0]) |
| 299 | +self.expected=np.array([0.0,0.125,0.25,0.375,0.5]) |
| 300 | + |
| 301 | + |
| 302 | +classtest_OffsetNorm_VsAllEqual(_base_NormMixin): |
| 303 | +defsetup(self): |
| 304 | +self.v=10 |
| 305 | +self.normclass=mcolors.OffsetNorm |
| 306 | +self.norm=self.normclass(vmin=self.v,vcenter=self.v,vmax=self.v) |
| 307 | +self.vals=np.array([-2.0,-1.0,0.0,1.0,2.0]) |
| 308 | +self.expected=np.array([0.0,0.0,0.0,0.0,0.0]) |
| 309 | +self.expected_inv=self.expected+self.v |
| 310 | + |
| 311 | +deftest_inverse(self): |
| 312 | +assert_array_almost_equal( |
| 313 | +self.norm.inverse(self.norm(self.vals)), |
| 314 | +self.expected_inv |
| 315 | + ) |
| 316 | + |
| 317 | + |
| 318 | +classtest_OffsetNorm_Errors(object): |
| 319 | +defsetup(self): |
| 320 | +self.vals=np.arange(50) |
| 321 | + |
| 322 | +@raises(ValueError) |
| 323 | +deftest_VminGTVcenter(self): |
| 324 | +norm=mcolors.OffsetNorm(vmin=10,vcenter=0,vmax=20) |
| 325 | +norm(self.vals) |
| 326 | + |
| 327 | +@raises(ValueError) |
| 328 | +deftest_VminGTVmax(self): |
| 329 | +norm=mcolors.OffsetNorm(vmin=10,vcenter=0,vmax=5) |
| 330 | +norm(self.vals) |
| 331 | + |
| 332 | +@raises(ValueError) |
| 333 | +deftest_VcenterGTVmax(self): |
| 334 | +norm=mcolors.OffsetNorm(vmin=10,vcenter=25,vmax=20) |
| 335 | +norm(self.vals) |
| 336 | + |
| 337 | +@raises(ValueError) |
| 338 | +deftest_premature_scaling(self): |
| 339 | +norm=mcolors.OffsetNorm() |
| 340 | +norm.inverse(np.array([0.1,0.5,0.9])) |
| 341 | + |
| 342 | + |
166 | 343 | deftest_SymLogNorm():
|
167 | 344 | """
|
168 | 345 | Test SymLogNorm behavior
|
@@ -281,7 +458,12 @@ def test_cmap_and_norm_from_levels_and_colors2():
|
281 | 458 | 'Wih extend={0!r} and data '
|
282 | 459 | 'value={1!r}'.format(extend,d_val))
|
283 | 460 |
|
284 |
| -assert_raises(ValueError,mcolors.from_levels_and_colors,levels,colors) |
| 461 | +assert_raises( |
| 462 | +ValueError, |
| 463 | +mcolors.from_levels_and_colors, |
| 464 | +levels, |
| 465 | +colors |
| 466 | + ) |
285 | 467 |
|
286 | 468 |
|
287 | 469 | deftest_rgb_hsv_round_trip():
|
|