Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Bridging Time Series Frequencies for Nowcasting

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
NotificationsYou must be signed in to change notification settings

marcburri/bridgr

Repository files navigation

Lifecycle: stableR-CMD-checkbridgr status badgeCRAN statusCodecov test coverage

bridgr is designed to simplify the implementation and evaluation ofbridge models, which are useful for nowcasting (predicting the presentor near-term) and forecasting macroeconomic variables like GDP.

Bridge models are statistical tools that link high-frequency indicators(e.g., monthly industrial production) to low-frequency target variables(e.g., quarterly GDP) by forecasting and aggregating the indicators tomatch the target’s frequency. They enable timely predictions before theofficial release of low-frequency data, making them essential forpolicymakers who need early insights for decision-making.

Installation

From CRAN:

install.packages("bridgr")

You can install the development version ofbridgr like so:

# install.packages("devtools")devtools::install_github("marcburri/bridgr")

Example

This is a basic example:

library(bridgr)gdp<- suppressMessages(tsbox::ts_pc(bridgr::gdp))bridge_model<- bridge(target=gdp,indic=baro,indic_predict="auto.arima",indic_lags=2,target_lags=1,h=2)#> The start dates of the target and indicator variables do not match. Aligning them to 2004-04-01#> Dependent variable: gdp | Frequency: quarter | Estimation sample: 2004-04-01 - 2022-10-01 | Forecast horizon: 2 quarter(s)forecast(bridge_model)#>    Point Forecast      Lo 80    Hi 80      Lo 95    Hi 95#> 74      0.8313868 -0.1302710 1.793045 -0.6393418 2.302115#> 75      0.5363317 -0.4397745 1.512438 -0.9564939 2.029157summary(bridge_model)#> Bridge model summary#> -----------------------------------#> Main model:#> -----------------------------------#> Series:  gdp#> Regression with ARIMA(1,0,0) errors#>#> Coefficients:#>          ar1  intercept    baro  baro_lag1  baro_lag2#>       0.1740    -7.4164  0.1574    -0.0957     0.0172#> s.e.  0.1312     1.4152  0.0126     0.0125     0.0127#>#> sigma^2 = 0.5631:  log likelihood = -80.04#> AIC=172.09   AICc=173.36   BIC=185.83#> -----------------------------------#> Single indicator models:#> -----------------------------------#> Series:  baro#> ARIMA(1,0,2) with non-zero mean#>#> Coefficients:#>          ar1     ma1     ma2      mean#>       0.6688  0.5305  0.3316  100.8580#> s.e.  0.0653  0.0799  0.0753    1.5774#>#> sigma^2 = 18.46:  log likelihood = -646.14#> AIC=1302.28   AICc=1302.55   BIC=1319.36#> Aggregation to low frequency:#> Using mean over values in corresponding periods.#> -----------------------------------

About

Bridging Time Series Frequencies for Nowcasting

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp