Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

[CVPR 2024] Official RT-DETR (RTDETR paddle pytorch), Real-Time DEtection TRansformer, DETRs Beat YOLOs on Real-time Object Detection. 🔥 🔥 🔥

License

NotificationsYou must be signed in to change notification settings

lyuwenyu/RT-DETR

Repository files navigation

English |简体中文

RT-DETR: DETRs Beat YOLOs on Real-time Object Detection

licenseprsissuesissuesarXivemal


This is the official implementation of papers

Fig

🚀 Updates

  • [2025.11.18] Release thenewest member of the RT-DETR family:RT-DETRv4:Painlessly Furthering Real-Time Object Detection with Vision Foundation Models.By harnessing the rapidly evolving capabilities of Vision Foundation Models (VFMs), we boost lightweight detectors and, without incurring any extra inference latency, significantly improve the performance of the full-size model.
  • [2024.11.28] Add torch tool for parameters and flops statistics. seerun_profile.py
  • [2024.10.10] Add sliced inference support for small object detecion.#468
  • [2024.09.23] Add ✅Regnet and DLA34 for RTDETR.
  • [2024.08.27] Add hubconf.py file to support torch hub.
  • [2024.08.22] Improve the performance of ✅RT-DETRv2-S to 48.1 mAP (+1.6 compared to RT-DETR-R18).
  • [2024.07.24] Release ✅RT-DETRv2!
  • [2024.02.27] Our work has been accepted to CVPR 2024!
  • [2024.01.23] Fix difference on data augmentation with paper in rtdetr_pytorch#84.
  • [2023.11.07] Add pytorch ✅rtdetr_r34vd for requests#107,#114.
  • [2023.11.05] Upgrade the logic ofremap_mscoco_category to facilitate training of custom datasets, see detils inTrain custom data part.#81.
  • [2023.10.23] Adddiscussion for deployments, supported onnxruntime, TensorRT, openVINO.
  • [2023.10.12] Add tuning code for pytorch version, now you can tuning rtdetr based on pretrained weights.
  • [2023.09.19] Upload ✅pytorch weights convert from paddle version.
  • [2023.08.24] Release RT-DETR-R18 pretrained models on objects365.49.2 mAP and217 FPS.
  • [2023.08.22] Upload ✅rtdetr_pytorch source code. Please enjoy it!
  • [2023.08.15] Release RT-DETR-R101 pretrained models on objects365.56.2 mAP and74 FPS.
  • [2023.07.30] Release RT-DETR-R50 pretrained models on objects365.55.3 mAP and108 FPS.
  • [2023.07.28] Fix some bugs, and add some comments.1,2.
  • [2023.07.13] Upload ✅training logs on coco.
  • [2023.05.17] Release RT-DETR-R18, RT-DETR-R34, RT-DETR-R50-m(example for scaled).
  • [2023.04.17] Release RT-DETR-R50, RT-DETR-R101, RT-DETR-L, RT-DETR-X.

📣 News

📍 Implementations

ModelInput shapeDataset$AP^{val}$$AP^{val}_{50}$Params(M)FLOPs(G)T4 TensorRT FP16(FPS)
RT-DETR-R18640COCO46.563.82060217
RT-DETR-R34640COCO48.966.83192161
RT-DETR-R50-m640COCO51.369.636100145
RT-DETR-R50640COCO53.171.342136108
RT-DETR-R101640COCO54.372.77625974
RT-DETR-HGNetv2-L640COCO53.071.632110114
RT-DETR-HGNetv2-X640COCO54.873.16723474
RT-DETR-R18640COCO + Objects36549.266.62060217
RT-DETR-R50640COCO + Objects36555.373.442136108
RT-DETR-R101640COCO + Objects36556.274.67625974
RT-DETRv2-S640COCO48.1 (+1.6)65.12060217
RT-DETRv2-M*640COCO49.9 (+1.0)67.53192161
RT-DETRv2-M640COCO51.9 (+0.6)69.936100145
RT-DETRv2-L640COCO53.4 (+0.3)71.642136108
RT-DETRv2-X640COCO54.372.8 (+0.1)7625974

Notes:

  • COCO + Objects365 in the table means finetuned model on COCO using pretrained weights trained on Objects365.

🦄 Performance

🏕️ Complex Scenarios

🌋 Difficult Conditions

Citation

If you useRT-DETR orRTDETRv2 in your work, please use the following BibTeX entries:

@misc{lv2023detrs,      title={DETRs Beat YOLOs on Real-time Object Detection},      author={Yian Zhao and Wenyu Lv and Shangliang Xu and Jinman Wei and Guanzhong Wang and Qingqing Dang and Yi Liu and Jie Chen},      year={2023},      eprint={2304.08069},      archivePrefix={arXiv},      primaryClass={cs.CV}}@misc{lv2024rtdetrv2improvedbaselinebagoffreebies,      title={RT-DETRv2: Improved Baseline with Bag-of-Freebies for Real-Time Detection Transformer},       author={Wenyu Lv and Yian Zhao and Qinyao Chang and Kui Huang and Guanzhong Wang and Yi Liu},      year={2024},      eprint={2407.17140},      archivePrefix={arXiv},      primaryClass={cs.CV},      url={https://arxiv.org/abs/2407.17140}, }

About

[CVPR 2024] Official RT-DETR (RTDETR paddle pytorch), Real-Time DEtection TRansformer, DETRs Beat YOLOs on Real-time Object Detection. 🔥 🔥 🔥

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp