Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Barnes-Hut t-SNE

License

NotificationsYou must be signed in to change notification settings

lvdmaaten/bhtsne

Repository files navigation

Build Status

This software package contains a Barnes-Hut implementation of the t-SNE algorithm. The implementation is described inthis paper.

Installation

On Linux or OS X, compile the source using the following command:

g++ sptree.cpp tsne.cpp tsne_main.cpp -o bh_tsne -O2

The executable will be calledbh_tsne.

On Windows using Visual C++, do the following in your command line:

  • Find thevcvars64.bat file in your Visual C++ installation directory. This file may be namedvcvars64.bat or something similar. For example:
  // Visual Studio 12  "C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\bin\amd64\vcvars64.bat"  // Visual Studio 2013 Express:  C:\VisualStudioExp2013\VC\bin\x86_amd64\vcvarsx86_amd64.bat
  • Fromcmd.exe, go to the directory containing that .bat file and run it.

  • Go tobhtsne directory and run:

  nmake -f Makefile.win all

The executable will be calledwindows\bh_tsne.exe.

Usage

The code comes with wrappers for Matlab and Python. These wrappers write your data to a file calleddata.dat, run thebh_tsne binary, and read the result fileresult.dat that the binary produces. There are also external wrappers available forTorch,R, andJulia. Writing your own wrapper should be straightforward; please refer to one of the existing wrappers for the format of the data and result files.

Demonstration of usage in Matlab:

filename= websave('mnist_train.mat','https://github.com/awni/cs224n-pa4/blob/master/Simple_tSNE/mnist_train.mat?raw=true');load(filename);numDims=2; pcaDims=50; perplexity=50; theta=.5; alg='svd';map= fast_tsne(digits',numDims,pcaDims,perplexity,theta,alg);gscatter(map(:,1), map(:,2),labels');

Demonstration of usage in Python:

importnumpyasnpimportbhtsnedata=np.loadtxt("mnist2500_X.txt",skiprows=1)embedding_array=bhtsne.run_bh_tsne(data,initial_dims=data.shape[1])

Python Wrapper

Usage:

python bhtsne.py [-h] [-d NO_DIMS] [-p PERPLEXITY] [-t THETA]                  [-r RANDSEED] [-n INITIAL_DIMS] [-v] [-i INPUT]                  [-o OUTPUT] [--use_pca] [--no_pca] [-m MAX_ITER]

Below are the various options the wrapper programbhtsne.py expects:

  • -h, --help show this help message and exit
  • -d NO_DIMS, --no_dims NO_DIMS
  • -p PERPLEXITY, --perplexity PERPLEXITY
  • -t THETA, --theta THETA
  • -r RANDSEED, --randseed RANDSEED
  • -n INITIAL_DIMS, --initial_dims INITIAL_DIMS
  • -v, --verbose
  • -i INPUT, --input INPUT: the input file, expects a TSV with the first row as the header.
  • -o OUTPUT, --output OUTPUT: A TSV file having each row as thed dimensional embedding.
  • --use_pca
  • --no_pca
  • -m MAX_ITER, --max_iter MAX_ITER

About

Barnes-Hut t-SNE

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors19


[8]ページ先頭

©2009-2025 Movatter.jp