Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

[ECAI 2023] Official implementation of "FATRER: Full-Attention Topic Regularizer for Accurate and Robust Conversational Emotion Recognition"

License

NotificationsYou must be signed in to change notification settings

ludybupt/FATRER

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Page Views CountGitHub

FATRER

[ECAI 2023] Official Pytorch implementation of "FATRER: Full-Attention Topic Regularizer for Accurate and Robust Conversational Emotion Recognition"[paper]

Framework

Full-attention topic regularizer(FATRER) introduces an emotion-relatedglobal view when modeling the local context in a conversation. Ajoint topic modeling strategy is introduced to implement regularization from both representation and loss perspectives. To avoid overregularization, FATRER drops the constraints on prior distributions that exist in traditional topic modeling and perform probabilistic approximations based entirely on attention alignment. Experiments showthat FATRER obtain more favorable results than state-of-the-artmodels, and gain convincing robustness.fater_demo

News

  • [2023-10-02]: FARTER will be presented orally(Video) in ECAI2023(Programme) Technical Session 1 at 09:30 AM in Room S4A and Poster Session 1 at 11:15 AM in Hall S3B(Poster).
  • [2023-07-15]: FARTER has been accepted byECAI 2023 (Paper 223).

Prerequisites

  • Python 3.9.12
  • Pytorch 1.10.1+cu113
pipinstll -rrequirements.txt

Usage

Benchmark Datasets

  • IEMOCAP/MELD/EmoryNLP/EmoryNLP

Generalization results on four datasets

fater_demo

Execution

IEMOCAP

  1. FARTER-Multi:
# trainpythonmain.pyconf/FATRER_multi.yaml#train and conduct attack(U+C) based on PWWS(per 50 epoch):pythonmain.pyconf/FATRER_multi_pwws_attack.yaml#train and conduct attack(U+C) based on TextFooler(per 50 epoch):pythonmain.pyconf/FATRER_multi_textfooler_attack.yaml#train and conduct attack(U+C) based on TextBugger(per 50 epoch):pythonmain.pyconf/FATRER_multi_textbugger_attack.yaml
  1. FARTER-Multi(without topic-oriented regularization):
# trainpythonmain.pyconf/FATRER_multi_wo_topic.yaml
  1. FARTER-Single:
# trainpythonmain.pyconf/FATRER_single.yaml
  1. FARTER-Single(without topic-oriented regularization):
#trainpythonmain.pyconf/FATRER_single_wo_topic.yaml
  1. DialTRM(Baseline):
#trainpythonmain.pyconf/Baseline.yaml
  1. VAE(topic-oriented)
#train VAE(Laplace)pythonmain.pyconf/VAE_Laplace.yaml#train VAE(Dirichlet)pythonmain.pyconf/VAE_Dirichlet.yaml#train VAE(Gamma)pythonmain.pyconf/VAE_Gamma.yaml#train VAE(LogNormal)pythonmain.pyconf/VAE_LogNormal.yaml

MELD

  1. FARTER-Multi:
pythonmain.pyconf/FATRER_multi_MELD.yaml
  1. FARTER-Single:
pythonmain.pyconf/FATRER_single_MELD.yaml

EmoryNLP

  1. FARTER-Multi:
pythonmain.pyconf/FATRER_multi_EmoryNLP.yaml
  1. FARTER-Single:
pythonmain.pyconf/FATRER_single_EmoryNLP.yaml

DailyDialog

  1. FARTER-Multi:
pythonmain.pyconf/FATRER_multi_DailyDialog.yaml
  1. FARTER-Single:
pythonmain.pyconf/FATRER_single_DailyDialog.yaml

Cite us

Please cite the following paper if you find this code useful in your work.

@article{mao2023fatrer,  title={FATRER: Full-Attention Topic Regularizer for Accurate and Robust Conversational Emotion Recognition},  author={Mao, Yuzhao and Lu, Di and Wang, Xiaojie and Zhang, Yang},  journal={arXiv preprint arXiv:2307.12221},  year={2023}}

License

MIT license

About

[ECAI 2023] Official implementation of "FATRER: Full-Attention Topic Regularizer for Accurate and Robust Conversational Emotion Recognition"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

[8]ページ先頭

©2009-2025 Movatter.jp