- Notifications
You must be signed in to change notification settings - Fork436
Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)
License
NotificationsYou must be signed in to change notification settings
lonePatient/BERT-NER-Pytorch
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
BERT for Chinese NER.
update:其他一些可以参考,包括Biaffine、GlobalPointer等:examples
- cner: datasets/cner
- CLUENER:https://github.com/CLUEbenchmark/CLUENER
- BERT+Softmax
- BERT+CRF
- BERT+Span
- 1.1.0 =< PyTorch < 1.5.0
- cuda=9.0
- python3.6+
Input format (prefer BIOS tag scheme), with each character its label for one line. Sentences are splited with a null line.
美B-LOC国I-LOC的O华B-PER莱I-PER士I-PER我O跟O他O- Modify the configuration information in
run_ner_xxx.pyorrun_ner_xxx.sh. sh scripts/run_ner_xxx.sh
note: file structure of the model
├── prev_trained_model| └── bert_base| | └── pytorch_model.bin| | └── config.json| | └── vocab.txt| | └── ......The overall performance of BERT ondev:
| Accuracy (entity) | Recall (entity) | F1 score (entity) | |
|---|---|---|---|
| BERT+Softmax | 0.7897 | 0.8031 | 0.7963 |
| BERT+CRF | 0.7977 | 0.8177 | 0.8076 |
| BERT+Span | 0.8132 | 0.8092 | 0.8112 |
| BERT+Span+adv | 0.8267 | 0.8073 | 0.8169 |
| BERT-small(6 layers)+Span+kd | 0.8241 | 0.7839 | 0.8051 |
| BERT+Span+focal_loss | 0.8121 | 0.8008 | 0.8064 |
| BERT+Span+label_smoothing | 0.8235 | 0.7946 | 0.8088 |
The overall performance of ALBERT ondev:
| model | version | Accuracy(entity) | Recall(entity) | F1(entity) | Train time/epoch |
|---|---|---|---|---|---|
| albert | base_google | 0.8014 | 0.6908 | 0.7420 | 0.75x |
| albert | large_google | 0.8024 | 0.7520 | 0.7763 | 2.1x |
| albert | xlarge_google | 0.8286 | 0.7773 | 0.8021 | 6.7x |
| bert | 0.8118 | 0.8031 | 0.8074 | ----- | |
| albert | base_bright | 0.8068 | 0.7529 | 0.7789 | 0.75x |
| albert | large_bright | 0.8152 | 0.7480 | 0.7802 | 2.2x |
| albert | xlarge_bright | 0.8222 | 0.7692 | 0.7948 | 7.3x |
The overall performance of BERT ondev(test):
| Accuracy (entity) | Recall (entity) | F1 score (entity) | |
|---|---|---|---|
| BERT+Softmax | 0.9586(0.9566) | 0.9644(0.9613) | 0.9615(0.9590) |
| BERT+CRF | 0.9562(0.9539) | 0.9671(0.9644) | 0.9616(0.9591) |
| BERT+Span | 0.9604(0.9620) | 0.9617(0.9632) | 0.9611(0.9626) |
| BERT+Span+focal_loss | 0.9516(0.9569) | 0.9644(0.9681) | 0.9580(0.9625) |
| BERT+Span+label_smoothing | 0.9566(0.9568) | 0.9624(0.9656) | 0.9595(0.9612) |
About
Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)
Topics
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
No releases published
Packages0
No packages published