Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

[mlir][linalg] Update vectorization logic for linalg.unpack#149156

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to ourterms of service andprivacy statement. We’ll occasionally send you account related emails.

Already on GitHub?Sign in to your account

Merged

Conversation

banach-space
Copy link
Contributor

@banach-spacebanach-space commentedJul 16, 2025
edited
Loading

This PR makes sure that we don't generate unnecessarytensor.empty
when vectorizinglinalg.unpack.

To better visualize the changes implemented here, consider this IR:

func.func@example(%source:tensor<8x4x16x16xf32>,%dest:tensor<64x127xf32>) ->tensor<64x127xf32> {%res =linalg.unpack%source      outer_dims_perm = [1,0]      inner_dims_pos = [0,1]      inner_tiles = [16,16]    into%dest :tensor<8x4x16x16xf32> ->tensor<64x127xf32>    return%res :tensor<64x127xf32> }

Below is the output after vectorization, BEFORE and AFTER this PR.

BEFORE (notetensor.empty and the fact that%arg1 is not used):

  func.func@example(%arg0:tensor<8x4x16x16xf32>,%arg1:tensor<64x127xf32>) ->tensor<64x127xf32> {%cst =arith.constant 0.000000e+00 :f32%c0 =arith.constant0 :index%0 =vector.transfer_read%arg0[%c0,%c0,%c0,%c0],%cst {in_bounds= [true,true,true,true]} :tensor<8x4x16x16xf32>,vector<8x4x16x16xf32>%1 =vector.transpose%0, [1,2,0,3] :vector<8x4x16x16xf32>tovector<4x16x8x16xf32>%2 =vector.shape_cast%1 :vector<4x16x8x16xf32>tovector<64x128xf32>%3 =tensor.empty() :tensor<64x127xf32>%c0_0 =arith.constant0 :index%4 =vector.transfer_write%2,%3[%c0_0,%c0_0] {in_bounds= [true,false]} :vector<64x128xf32>,tensor<64x127xf32>    return%4 :tensor<64x127xf32>  }

AFTER (note that%arg1 is correctly used):

  func.func@example(%arg0:tensor<8x4x16x16xf32>,%arg1:tensor<64x127xf32>) ->tensor<64x127xf32> {%cst =arith.constant 0.000000e+00 :f32%c0 =arith.constant0 :index%0 =vector.transfer_read%arg0[%c0,%c0,%c0,%c0],%cst {in_bounds= [true,true,true,true]} :tensor<8x4x16x16xf32>,vector<8x4x16x16xf32>%1 =vector.transpose%0, [1,2,0,3] :vector<8x4x16x16xf32>tovector<4x16x8x16xf32>%2 =vector.shape_cast%1 :vector<4x16x8x16xf32>tovector<64x128xf32>%c0_0 =arith.constant0 :index%3 =vector.transfer_write%2,%arg1[%c0_0,%c0_0] {in_bounds= [true,false]} :vector<64x128xf32>,tensor<64x127xf32>    return%3 :tensor<64x127xf32>  }

This PR makes sure that we don't generate unnecessary `tensor.empty`when vectorizing `linalg.unpack`.To better visualize the changes implemented here, consider this IR:```mlirfunc.func@example(  %source: tensor<8x4x16x16xf32>,  %dest: tensor<64x127xf32>) -> tensor<64x127xf32> {    %res = linalg.unpack %source      outer_dims_perm = [1, 0]      inner_dims_pos = [0, 1]      inner_tiles = [16, 16]    into %dest : tensor<8x4x16x16xf32> -> tensor<64x127xf32>    return %res : tensor<64x127xf32> }```BEFORE (note `tensor.empty` and the fact that `%arg1` is not used):```mlir  func.func@example(%arg0: tensor<8x4x16x16xf32>, %arg1: tensor<64x127xf32>) -> tensor<64x127xf32> {    %cst = arith.constant 0.000000e+00 : f32    %c0 = arith.constant 0 : index    %0 = vector.transfer_read %arg0[%c0, %c0, %c0, %c0], %cst {in_bounds = [true, true, true, true]} : tensor<8x4x16x16xf32>, vector<8x4x16x16xf32>    %1 = vector.transpose %0, [1, 2, 0, 3] : vector<8x4x16x16xf32> to vector<4x16x8x16xf32>    %2 = vector.shape_cast %1 : vector<4x16x8x16xf32> to vector<64x128xf32>    %3 = tensor.empty() : tensor<64x127xf32>    %c0_0 = arith.constant 0 : index    %4 = vector.transfer_write %2, %3[%c0_0, %c0_0] {in_bounds = [true, false]} : vector<64x128xf32>, tensor<64x127xf32>    return %4 : tensor<64x127xf32>  }```AFTER (note that `%arg1` is correctly used):```mlir  func.func@example(%arg0: tensor<8x4x16x16xf32>, %arg1: tensor<64x127xf32>) -> tensor<64x127xf32> {    %cst = arith.constant 0.000000e+00 : f32    %c0 = arith.constant 0 : index    %0 = vector.transfer_read %arg0[%c0, %c0, %c0, %c0], %cst {in_bounds = [true, true, true, true]} : tensor<8x4x16x16xf32>, vector<8x4x16x16xf32>    %1 = vector.transpose %0, [1, 2, 0, 3] : vector<8x4x16x16xf32> to vector<4x16x8x16xf32>    %2 = vector.shape_cast %1 : vector<4x16x8x16xf32> to vector<64x128xf32>    %c0_0 = arith.constant 0 : index    %3 = vector.transfer_write %2, %arg1[%c0_0, %c0_0] {in_bounds = [true, false]} : vector<64x128xf32>, tensor<64x127xf32>    return %3 : tensor<64x127xf32>  }```
@llvmbot
Copy link
Member

llvmbot commentedJul 16, 2025
edited
Loading

@llvm/pr-subscribers-mlir-linalg

@llvm/pr-subscribers-mlir

Author: Andrzej Warzyński (banach-space)

Changes

This PR makes sure that we don't generate unnecessarytensor.empty
when vectorizinglinalg.unpack.

To better visualize the changes implemented here, consider this IR:

func.func@<!-- -->example(%source:tensor&lt;8x4x16x16xf32&gt;,%dest:tensor&lt;64x127xf32&gt;) -&gt;tensor&lt;64x127xf32&gt; {%res =linalg.unpack%source      outer_dims_perm = [1,0]      inner_dims_pos = [0,1]      inner_tiles = [16,16]    into%dest :tensor&lt;8x4x16x16xf32&gt; -&gt;tensor&lt;64x127xf32&gt;    return%res :tensor&lt;64x127xf32&gt; }

BEFORE (notetensor.empty and the fact that%arg1 is not used):

  func.func@<!-- -->example(%arg0:tensor&lt;8x4x16x16xf32&gt;,%arg1:tensor&lt;64x127xf32&gt;) -&gt;tensor&lt;64x127xf32&gt; {%cst =arith.constant 0.000000e+00 :f32%c0 =arith.constant0 :index%0 =vector.transfer_read%arg0[%c0,%c0,%c0,%c0],%cst {in_bounds= [true,true,true,true]} :tensor&lt;8x4x16x16xf32&gt;,vector&lt;8x4x16x16xf32&gt;%1 =vector.transpose%0, [1,2,0,3] :vector&lt;8x4x16x16xf32&gt;tovector&lt;4x16x8x16xf32&gt;%2 =vector.shape_cast%1 :vector&lt;4x16x8x16xf32&gt;tovector&lt;64x128xf32&gt;%3 =tensor.empty() :tensor&lt;64x127xf32&gt;%c0_0 =arith.constant0 :index%4 =vector.transfer_write%2,%3[%c0_0,%c0_0] {in_bounds= [true,false]} :vector&lt;64x128xf32&gt;,tensor&lt;64x127xf32&gt;    return%4 :tensor&lt;64x127xf32&gt;  }

AFTER (note that%arg1 is correctly used):

  func.func@<!-- -->example(%arg0:tensor&lt;8x4x16x16xf32&gt;,%arg1:tensor&lt;64x127xf32&gt;) -&gt;tensor&lt;64x127xf32&gt; {%cst =arith.constant 0.000000e+00 :f32%c0 =arith.constant0 :index%0 =vector.transfer_read%arg0[%c0,%c0,%c0,%c0],%cst {in_bounds= [true,true,true,true]} :tensor&lt;8x4x16x16xf32&gt;,vector&lt;8x4x16x16xf32&gt;%1 =vector.transpose%0, [1,2,0,3] :vector&lt;8x4x16x16xf32&gt;tovector&lt;4x16x8x16xf32&gt;%2 =vector.shape_cast%1 :vector&lt;4x16x8x16xf32&gt;tovector&lt;64x128xf32&gt;%c0_0 =arith.constant0 :index%3 =vector.transfer_write%2,%arg1[%c0_0,%c0_0] {in_bounds= [true,false]} :vector&lt;64x128xf32&gt;,tensor&lt;64x127xf32&gt;    return%3 :tensor&lt;64x127xf32&gt;  }

Full diff:https://github.com/llvm/llvm-project/pull/149156.diff

2 Files Affected:

  • (modified) mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp (+1-4)
  • (modified) mlir/test/Dialect/Linalg/vectorization/linalg-ops.mlir (+30-21)
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cppindex b467114c72f7d..363a7c1a1a557 100644--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp@@ -1935,11 +1935,8 @@ vectorizeAsTensorUnpackOp(RewriterBase &rewriter, linalg::UnPackOp unpackOp,       unpackOp.getDestType().hasStaticShape()           ? vectorSizes           : shapeCastOp.getResultVectorType().getShape());-  Value dest = rewriter.create<tensor::EmptyOp>(-      loc, reifiedRetShapes[0],-      shapeCastOp.getResult().getType().getElementType());   Operation *write = createWriteOrMaskedWrite(-      rewriter, loc, shapeCastOp.getResult(), dest,+      rewriter, loc, shapeCastOp.getResult(), unpackOp.getDest(),       /*writeIndices=*/{}, useInBoundsInsteadOfMasking);   newResults.push_back(write->getResult(0));   return success();diff --git a/mlir/test/Dialect/Linalg/vectorization/linalg-ops.mlir b/mlir/test/Dialect/Linalg/vectorization/linalg-ops.mlirindex 6722de817f6bf..11c86f1c31406 100644--- a/mlir/test/Dialect/Linalg/vectorization/linalg-ops.mlir+++ b/mlir/test/Dialect/Linalg/vectorization/linalg-ops.mlir@@ -1158,6 +1158,7 @@ module attributes {transform.with_named_sequence} { // -----  // CHECK-LABEL: func @test_vectorize_dynamic_shapes_unpack+// CHECK-SAME:      %[[ARG_0:.*]]: tensor<?x?xf32>, func.func @test_vectorize_dynamic_shapes_unpack(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?x16x2xf32>) -> tensor<?x?xf32> { // CHECK: %[[C0:.*]] = arith.constant 0 // CHECK: %[[DIM:.*]] = tensor.dim %arg0, %[[C0]] : tensor<?x?xf32>@@ -1175,9 +1176,8 @@ func.func @test_vectorize_dynamic_shapes_unpack(%arg0: tensor<?x?xf32>, %arg1: t // CHECK: %[[read0:.*]] = vector.mask %[[readMsk0]] {{.*}} vector.transfer_read %{{.*}} : tensor<?x?x16x2xf32>, vector<2x1x16x2xf32> } : vector<2x1x16x2xi1> -> vector<2x1x16x2xf32> // CHECK: %[[trans0:.*]] = vector.transpose %[[read0]], [0, 3, 1, 2] : vector<2x1x16x2xf32> to vector<2x2x1x16xf32> // CHECK: %[[sc0:.*]] = vector.shape_cast %[[trans0]] : vector<2x2x1x16xf32> to vector<4x16xf32>-// CHECK: %[[empt0:.*]] = tensor.empty // CHECK: %[[writeMsk0:.*]] = vector.create_mask {{.*}} : vector<4x16xi1>-// CHECK: %[[write0:.*]] = vector.mask %[[writeMsk0:.*]] {{.*}} vector.transfer_write %[[sc0]], %[[empt0]]+// CHECK: %[[write0:.*]] = vector.mask %[[writeMsk0:.*]] {{.*}} vector.transfer_write %[[sc0]], %[[ARG_0]] // CHECK: return %[[write0]]  %ret = linalg.unpack %arg1 inner_dims_pos = [1, 0] inner_tiles = [16, 2] into %arg0 : tensor<?x?x16x2xf32> -> tensor<?x?xf32>  return %ret : tensor<?x?xf32>@@ -1193,6 +1193,8 @@ module attributes {transform.with_named_sequence} { // -----  // CHECK-LABEL: func @test_vectorize_unpack+// CHECK-SAME:      %[[SRC:.*]]: tensor<8x8x32x16xf32>+// CHECK-SAME:      %[[DEST:.*]]: tensor<256x128xf32> func.func @test_vectorize_unpack(%source: tensor<8x8x32x16xf32>, %dest: tensor<256x128xf32>) -> tensor<256x128xf32> {     // CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 : f32     // CHECK: %[[C0:.*]]= arith.constant 0 : index@@ -1201,15 +1203,14 @@ func.func @test_vectorize_unpack(%source: tensor<8x8x32x16xf32>, %dest: tensor<2     // CHECK: %[[C32:.*]] = arith.constant 32 : index     // CHECK: %[[C16:.*]] = arith.constant 16 : index     // CHECK: %[[MSK0:.*]] = vector.create_mask %[[C8]], %[[C80]], %[[C32]], %[[C16]] : vector<16x8x32x16xi1>-    // CHECK: %[[READ0:.*]] = vector.mask %[[MSK0]] {{.*}} : vector<16x8x32x16xi1> -> vector<16x8x32x16xf32>+    // CHECK: %[[READ0:.*]] = vector.mask %[[MSK0]] { vector.transfer_read %[[SRC]]{{.*}}} : vector<16x8x32x16xi1> -> vector<16x8x32x16xf32>     // CHECK: %[[TRANSP0:.*]] = vector.transpose %[[READ0]], [0, 2, 1, 3] : vector<16x8x32x16xf32> to vector<16x32x8x16xf32>     // CHECK: %[[SHAPC:.*]] = vector.shape_cast %[[TRANSP0]] : vector<16x32x8x16xf32> to vector<512x128xf32>-    // CHECK: %[[EMPT:.*]] = tensor.empty() : tensor<256x128xf32>     // CHECK: %[[C01:.*]] = arith.constant 0 : index     // CHECK: %[[C256:.*]] = arith.constant 256 : index     // CHECK: %[[C128:.*]] = arith.constant 128 : index     // CHECK: %[[WRITEMSK:.*]] = vector.create_mask %[[C256]], %[[C128]] : vector<512x128xi1>-    // CHECK: %[[WRIT:.*]] = vector.mask %[[WRITEMSK]] {{.*}} : vector<512x128xi1> -> tensor<256x128xf32>+    // CHECK: %[[WRIT:.*]] = vector.mask %[[WRITEMSK]] { vector.transfer_write %[[SHAPC]], %[[DEST]]{{.*}}} : vector<512x128xi1> -> tensor<256x128xf32>     // CHECK: return %[[WRIT]] : tensor<256x128xf32>    %0 = linalg.unpack %source inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %dest : tensor<8x8x32x16xf32> -> tensor<256x128xf32>    return %0 : tensor<256x128xf32>@@ -1225,15 +1226,16 @@ func.func @test_vectorize_unpack(%source: tensor<8x8x32x16xf32>, %dest: tensor<2 // -----  // CHECK-LABEL: func @test_vectorize_unpack_no_masks+// CHECK-SAME:      %[[SRC:.*]]: tensor<8x8x32x16xf32>+// CHECK-SAME:      %[[DEST:.*]]: tensor<256x128xf32> func.func @test_vectorize_unpack_no_masks(%source: tensor<8x8x32x16xf32>, %dest: tensor<256x128xf32>) -> tensor<256x128xf32> {   // CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 : f32   // CHECK: %[[C0:.*]] = arith.constant 0 : index-  // CHECK: %[[READ:.*]] = vector.transfer_read {{.*}} : tensor<8x8x32x16xf32>, vector<8x8x32x16xf32>+  // CHECK: %[[READ:.*]] = vector.transfer_read %[[SRC]]{{.*}}} : tensor<8x8x32x16xf32>, vector<8x8x32x16xf32>   // CHECK: %[[TRANSP:.*]] = vector.transpose %[[READ]], [0, 2, 1, 3] : vector<8x8x32x16xf32> to vector<8x32x8x16xf32>   // CHECK: %[[SHAPC:.*]] = vector.shape_cast %[[TRANSP]] : vector<8x32x8x16xf32> to vector<256x128xf32>-  // CHECK: %[[EMPT:.*]] = tensor.empty() : tensor<256x128xf32>   // CHECK: %[[C00:.*]] = arith.constant 0 : index-  // CHECK: %[[WRIT:.*]] = vector.transfer_write %[[SHAPC]], {{.*}} : vector<256x128xf32>, tensor<256x128xf32>+  // CHECK: %[[WRIT:.*]] = vector.transfer_write %[[SHAPC]], %[[DEST]]{{.*}}} : vector<256x128xf32>, tensor<256x128xf32>   // CHECK: return %[[WRIT]] : tensor<256x128xf32>    %0 = linalg.unpack %source inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %dest : tensor<8x8x32x16xf32> -> tensor<256x128xf32>    return %0 : tensor<256x128xf32>@@ -1248,16 +1250,17 @@ func.func @test_vectorize_unpack_no_masks(%source: tensor<8x8x32x16xf32>, %dest:    // ------  // CHECK-LABEL: test_vectorize_unpack_with_outer_perm+// CHECK-LABEL: test_vectorize_unpack_with_outer_perm+// CHECK-SAME:      %[[SRC:.*]]: tensor<8x8x32x16xf32>+// CHECK-SAME:      %[[DEST:.*]]: tensor<256x128xf32>   func.func @test_vectorize_unpack_with_outer_perm(%source: tensor<8x8x32x16xf32>, %dest: tensor<256x128xf32>) -> tensor<256x128xf32> {   // CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 : f32   // CHECK: %[[C0:.*]] = arith.constant 0 : index-  // CHECK: %[[READ:.*]] = vector.transfer_read {{.*}} : tensor<8x8x32x16xf32>, vector<8x8x32x16xf32>+  // CHECK: %[[READ:.*]] = vector.transfer_read %[[SRC]]{{.*}}} : tensor<8x8x32x16xf32>, vector<8x8x32x16xf32>   // CHECK: %[[TRANSP:.*]] = vector.transpose %[[READ]], [1, 2, 0, 3] : vector<8x8x32x16xf32> to vector<8x32x8x16xf32>   // CHECK: %[[SHAPC:.*]] = vector.shape_cast %[[TRANSP]] : vector<8x32x8x16xf32> to vector<256x128xf32>-  // CHECK: %[[EMPT:.*]] = tensor.empty() : tensor<256x128xf32>   // CHECK: %[[C00:.*]] = arith.constant 0 : index-  // CHECK: %[[WRIT:.*]] = vector.transfer_write %[[SHAPC]], {{.*}} : vector<256x128xf32>, tensor<256x128xf32>+  // CHECK: %[[WRIT:.*]] = vector.transfer_write %[[SHAPC]], %[[DEST]]{{.*}}} : vector<256x128xf32>, tensor<256x128xf32>   // CHECK: return %[[WRIT]] : tensor<256x128xf32>    %0 = linalg.unpack %source outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %dest : tensor<8x8x32x16xf32> -> tensor<256x128xf32>    return %0 : tensor<256x128xf32>@@ -1327,15 +1330,17 @@ module attributes {transform.with_named_sequence} {    // -----+// CHECK-LABEL: test_vectorize_unpack_no_vector_sizes+// CHECK-SAME:      %[[SRC:.*]]: tensor<8x8x32x16xf32>+// CHECK-SAME:      %[[DEST:.*]]: tensor<256x128xf32> func.func @test_vectorize_unpack_no_vector_sizes(%source: tensor<8x8x32x16xf32>, %dest: tensor<256x128xf32>) -> tensor<256x128xf32> {   // CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 : f32   // CHECK: %[[C0:.*]] = arith.constant 0 : index-  // CHECK: %[[READ:.*]] = vector.transfer_read {{.*}} : tensor<8x8x32x16xf32>, vector<8x8x32x16xf32>+  // CHECK: %[[READ:.*]] = vector.transfer_read %[[SRC]]{{.*}}} : tensor<8x8x32x16xf32>, vector<8x8x32x16xf32>   // CHECK: %[[TRANSP:.*]] = vector.transpose %[[READ]], [0, 2, 1, 3] : vector<8x8x32x16xf32> to vector<8x32x8x16xf32>   // CHECK: %[[SHAPC:.*]] = vector.shape_cast %[[TRANSP]] : vector<8x32x8x16xf32> to vector<256x128xf32>-  // CHECK: %[[EMPT:.*]] = tensor.empty() : tensor<256x128xf32>   // CHECK: %[[C00:.*]] = arith.constant 0 : index-  // CHECK: %[[WRIT:.*]] = vector.transfer_write %[[SHAPC]], {{.*}} : vector<256x128xf32>, tensor<256x128xf32>+  // CHECK: %[[WRIT:.*]] = vector.transfer_write %[[SHAPC]], %[[DEST]]{{.*}}} : vector<256x128xf32>, tensor<256x128xf32>   // CHECK: return %[[WRIT]] : tensor<256x128xf32>    %0 = linalg.unpack %source inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %dest : tensor<8x8x32x16xf32> -> tensor<256x128xf32>    return %0 : tensor<256x128xf32>@@ -1350,15 +1355,17 @@ func.func @test_vectorize_unpack_no_vector_sizes(%source: tensor<8x8x32x16xf32>,    // -----+// CHECK-LABEL: test_vectorize_unpack_no_vector_sizes_slice_output+// CHECK-SAME:      %[[SRC:.*]]: tensor<8x4x16x16xf32>+// CHECK-SAME:      %[[DEST:.*]]: tensor<64x127xf32> func.func @test_vectorize_unpack_no_vector_sizes_slice_output(%source: tensor<8x4x16x16xf32>, %dest: tensor<64x127xf32>) -> tensor<64x127xf32> {   //      CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 : f32   //      CHECK: %[[C0:.*]] = arith.constant 0 : index-  //      CHECK: %[[READ:.*]] = vector.transfer_read {{.*}} : tensor<8x4x16x16xf32>, vector<8x4x16x16xf32>+  //      CHECK: %[[READ:.*]] = vector.transfer_read %[[SRC]]{{.*}}} : tensor<8x4x16x16xf32>, vector<8x4x16x16xf32>   //      CHECK: %[[TRANSP:.*]] = vector.transpose %[[READ]], [1, 2, 0, 3] : vector<8x4x16x16xf32> to vector<4x16x8x16xf32>   //      CHECK: %[[SHAPC:.*]] = vector.shape_cast %[[TRANSP]] : vector<4x16x8x16xf32> to vector<64x128xf32>-  //      CHECK: %[[EMPT:.*]] = tensor.empty() : tensor<64x127xf32>   //      CHECK: %[[C00:.*]] = arith.constant 0 : index-  //      CHECK: %[[WRIT:.*]] = vector.transfer_write %[[SHAPC]], %[[EMPT]]{{\[}}%[[C00]], %[[C00]]]+  //      CHECK: %[[WRIT:.*]] = vector.transfer_write %[[SHAPC]], %[[DEST]]   // CHECK-SAME:  {in_bounds = [true, false]} : vector<64x128xf32>, tensor<64x127xf32>   //      CHECK: return %[[WRIT]] : tensor<64x127xf32>    %0 = linalg.unpack %source outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [16, 16] into %dest : tensor<8x4x16x16xf32> -> tensor<64x127xf32>@@ -1374,18 +1381,20 @@ func.func @test_vectorize_unpack_no_vector_sizes_slice_output(%source: tensor<8x  // -----+// CHECK-LABEL: test_vectorize_unpack_no_vector_sizes_permute+// CHECK-SAME:      %[[SRC:.*]]:  tensor<4x7x4xf32>+// CHECK-SAME:      %[[DEST:.*]]:  tensor<7x16xf32> func.func @test_vectorize_unpack_no_vector_sizes_permute(%source: tensor<4x7x4xf32>, %dest: tensor<7x16xf32>) -> tensor<7x16xf32> {    %0 = linalg.unpack %source outer_dims_perm=[1, 0] inner_dims_pos = [1] inner_tiles = [4] into %dest : tensor<4x7x4xf32> -> tensor<7x16xf32>    return %0 : tensor<7x16xf32>  }   // CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 : f32   // CHECK: %[[C0:.*]] = arith.constant 0 : index-  // CHECK: %[[READ:.*]] = vector.transfer_read {{.*}} : tensor<4x7x4xf32>, vector<4x7x4xf32>+  // CHECK: %[[READ:.*]] = vector.transfer_read %[[SRC]]{{.*}}} : tensor<4x7x4xf32>, vector<4x7x4xf32>   // CHECK: %[[TRANSP:.*]] = vector.transpose %[[READ]], [1, 0, 2] : vector<4x7x4xf32> to vector<7x4x4xf32>   // CHECK: %[[SHAPC:.*]] = vector.shape_cast %[[TRANSP]] : vector<7x4x4xf32> to vector<7x16xf32>-  // CHECK: %[[EMPT:.*]] = tensor.empty() : tensor<7x16xf32>   // CHECK: %[[C00:.*]] = arith.constant 0 : index-  // CHECK: %[[WRIT:.*]] = vector.transfer_write %[[SHAPC]], {{.*}} : vector<7x16xf32>, tensor<7x16xf32>+  // CHECK: %[[WRIT:.*]] = vector.transfer_write %[[SHAPC]], %[[DEST]]{{.*}}} : vector<7x16xf32>, tensor<7x16xf32>   // CHECK: return %[[WRIT]] : tensor<7x16xf32>  module attributes {transform.with_named_sequence} {   transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {

@github-actionsGitHub Actions
Copy link

⚠️ We detected that you are using a GitHub private e-mail address to contribute to the repo.
Please turn offKeep my email addresses private setting in your account.
SeeLLVM Developer Policy andLLVM Discourse for more information.

Copy link
Contributor

@hanhanWhanhanW left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others.Learn more.

thanks!

@banach-spacebanach-space merged commitbce951c intollvm:mainJul 17, 2025
12 checks passed
@banach-spacebanach-space deleted the andrzej/linalg/unpack_no_empty branchJuly 17, 2025 08:14
Sign up for freeto join this conversation on GitHub. Already have an account?Sign in to comment
Reviewers

@hanhanWhanhanWhanhanW approved these changes

@dcaballedcaballeAwaiting requested review from dcaballedcaballe is a code owner

@nicolasvasilachenicolasvasilacheAwaiting requested review from nicolasvasilachenicolasvasilache is a code owner

@GroverkssGroverkssAwaiting requested review from GroverkssGroverkss is a code owner

@egebeyselegebeyselAwaiting requested review from egebeysel

Assignees
No one assigned
Projects
None yet
Milestone
No milestone
Development

Successfully merging this pull request may close these issues.

3 participants
@banach-space@llvmbot@hanhanW

[8]ページ先頭

©2009-2025 Movatter.jp