Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

Implementation of the PyTorch version of the Weather Deep Learning Model Zoo.

NotificationsYou must be signed in to change notification settings

lizhuoq/WeatherLearn

Repository files navigation

Implementation of the PyTorch version of the Weather Deep Learning Model Zoo.

Dependencies

python = "^3.11"torch = "2.1.0"timm = "0.9.10"numpy = "1.23.5"

Model-zoo

Pangu-Weather

Model Architecture

pangu_architecture

Example

# Pangufromweatherlearn.modelsimportPanguimporttorchif__name__=='__main__':B=1# batch_sizesurface=torch.randn(B,4,721,1440)# B, C, Lat, Lonsurface_mask=torch.randn(3,721,1440)# topography mask, land-sea mask, soil-type maskupper_air=torch.randn(B,5,13,721,1440)# B, C, Pl, Lat, Lonpangu_weather=Pangu()output_surface,output_upper_air=pangu_weather(surface,surface_mask,upper_air)
# Pangu_litefromweatherlearn.modelsimportPangu_liteimporttorchif__name__=='__main__':B=1# batch_sizesurface=torch.randn(B,4,721,1440)# B, C, Lat, Lonsurface_mask=torch.randn(3,721,1440)# topography mask, land-sea mask, soil-type maskupper_air=torch.randn(B,5,13,721,1440)# B, C, Pl, Lat, Lonpangu_lite=Pangu_lite()output_surface,output_upper_air=pangu_lite(surface,surface_mask,upper_air)

References

@article{bi2023accurate,  title={Accurate medium-range global weather forecasting with 3D neural networks},  author={Bi, Kaifeng and Xie, Lingxi and Zhang, Hengheng and Chen, Xin and Gu, Xiaotao and Tian, Qi},  journal={Nature},  volume={619},  number={7970},  pages={533--538},  year={2023},  publisher={Nature Publishing Group}}
@article{bi2022pangu,  title={Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global Weather Forecast},  author={Bi, Kaifeng and Xie, Lingxi and Zhang, Hengheng and Chen, Xin and Gu, Xiaotao and Tian, Qi},  journal={arXiv preprint arXiv:2211.02556},  year={2022}}

Fuxi

Model Architecture

fuxi_architecture

Example

fromweatherlearn.modelsimportFuxiimporttorchif__name__=='__main__':B=1# batch_sizein_chans=out_chans=70# number of input channels or output channelsinput=torch.randn(B,in_chans,2,721,1440)# B C T Lat Lonfuxi=Fuxi()# patch_size : Default: (2, 4, 4)# embed_dim : Default: 1536# num_groups : Default: 32# num_heads : Default: 8# window_size : Default: 7output=fuxi(input)# B C Lat Lon

References

FuXi: A cascade machine learning forecasting system for 15-day global weather forecast

Published on npj Climate and Atmospheric Science:FuXi: a cascade machine learning forecasting system for 15-day global weather forecast

by Lei Chen, Xiaohui Zhong, Feng Zhang, Yuan Cheng, Yinghui Xu, Yuan Qi, Hao Li

License

BY-NC-SA 4.0 license

TODO

About

Implementation of the PyTorch version of the Weather Deep Learning Model Zoo.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

[8]ページ先頭

©2009-2025 Movatter.jp