- Notifications
You must be signed in to change notification settings - Fork19
lizhuoq/WeatherLearn
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Implementation of the PyTorch version of the Weather Deep Learning Model Zoo.
python = "^3.11"torch = "2.1.0"timm = "0.9.10"numpy = "1.23.5"
# Pangufromweatherlearn.modelsimportPanguimporttorchif__name__=='__main__':B=1# batch_sizesurface=torch.randn(B,4,721,1440)# B, C, Lat, Lonsurface_mask=torch.randn(3,721,1440)# topography mask, land-sea mask, soil-type maskupper_air=torch.randn(B,5,13,721,1440)# B, C, Pl, Lat, Lonpangu_weather=Pangu()output_surface,output_upper_air=pangu_weather(surface,surface_mask,upper_air)
# Pangu_litefromweatherlearn.modelsimportPangu_liteimporttorchif__name__=='__main__':B=1# batch_sizesurface=torch.randn(B,4,721,1440)# B, C, Lat, Lonsurface_mask=torch.randn(3,721,1440)# topography mask, land-sea mask, soil-type maskupper_air=torch.randn(B,5,13,721,1440)# B, C, Pl, Lat, Lonpangu_lite=Pangu_lite()output_surface,output_upper_air=pangu_lite(surface,surface_mask,upper_air)
@article{bi2023accurate, title={Accurate medium-range global weather forecasting with 3D neural networks}, author={Bi, Kaifeng and Xie, Lingxi and Zhang, Hengheng and Chen, Xin and Gu, Xiaotao and Tian, Qi}, journal={Nature}, volume={619}, number={7970}, pages={533--538}, year={2023}, publisher={Nature Publishing Group}}
@article{bi2022pangu, title={Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global Weather Forecast}, author={Bi, Kaifeng and Xie, Lingxi and Zhang, Hengheng and Chen, Xin and Gu, Xiaotao and Tian, Qi}, journal={arXiv preprint arXiv:2211.02556}, year={2022}}
fromweatherlearn.modelsimportFuxiimporttorchif__name__=='__main__':B=1# batch_sizein_chans=out_chans=70# number of input channels or output channelsinput=torch.randn(B,in_chans,2,721,1440)# B C T Lat Lonfuxi=Fuxi()# patch_size : Default: (2, 4, 4)# embed_dim : Default: 1536# num_groups : Default: 32# num_heads : Default: 8# window_size : Default: 7output=fuxi(input)# B C Lat Lon
FuXi: A cascade machine learning forecasting system for 15-day global weather forecast
Published on npj Climate and Atmospheric Science:FuXi: a cascade machine learning forecasting system for 15-day global weather forecast
by Lei Chen, Xiaohui Zhong, Feng Zhang, Yuan Cheng, Yinghui Xu, Yuan Qi, Hao Li
- FengWu Model (https://arxiv.org/pdf/2304.02948v1.pdf)
- FuXi Model (https://arxiv.org/pdf/2306.12873v3.pdf)
- Set a separate window_size for longitude and latitude in the Fuxi model.
- Add more unittest.
- Infer the Pangu model using the pre-trained weights provided by the official Pangu repository.