- Notifications
You must be signed in to change notification settings - Fork23
Implementation of the PyTorch version of the Weather Deep Learning Model Zoo.
License
NotificationsYou must be signed in to change notification settings
lizhuoq/WeatherLearn
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Implementation of the PyTorch version of the Weather Deep Learning Model Zoo.
python = "^3.11"torch = "2.1.0"timm = "0.9.10"numpy = "1.23.5"
# Pangufromweatherlearn.modelsimportPanguimporttorchif__name__=='__main__':B=1# batch_sizesurface=torch.randn(B,4,721,1440)# B, C, Lat, Lonsurface_mask=torch.randn(3,721,1440)# topography mask, land-sea mask, soil-type maskupper_air=torch.randn(B,5,13,721,1440)# B, C, Pl, Lat, Lonpangu_weather=Pangu()output_surface,output_upper_air=pangu_weather(surface,surface_mask,upper_air)
# Pangu_litefromweatherlearn.modelsimportPangu_liteimporttorchif__name__=='__main__':B=1# batch_sizesurface=torch.randn(B,4,721,1440)# B, C, Lat, Lonsurface_mask=torch.randn(3,721,1440)# topography mask, land-sea mask, soil-type maskupper_air=torch.randn(B,5,13,721,1440)# B, C, Pl, Lat, Lonpangu_lite=Pangu_lite()output_surface,output_upper_air=pangu_lite(surface,surface_mask,upper_air)
@article{bi2023accurate, title={Accurate medium-range global weather forecasting with 3D neural networks}, author={Bi, Kaifeng and Xie, Lingxi and Zhang, Hengheng and Chen, Xin and Gu, Xiaotao and Tian, Qi}, journal={Nature}, volume={619}, number={7970}, pages={533--538}, year={2023}, publisher={Nature Publishing Group}}
@article{bi2022pangu, title={Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global Weather Forecast}, author={Bi, Kaifeng and Xie, Lingxi and Zhang, Hengheng and Chen, Xin and Gu, Xiaotao and Tian, Qi}, journal={arXiv preprint arXiv:2211.02556}, year={2022}}
fromweatherlearn.modelsimportFuxiimporttorchif__name__=='__main__':B=1# batch_sizein_chans=out_chans=70# number of input channels or output channelsinput=torch.randn(B,in_chans,2,721,1440)# B C T Lat Lonfuxi=Fuxi()# patch_size : Default: (2, 4, 4)# embed_dim : Default: 1536# num_groups : Default: 32# num_heads : Default: 8# window_size : Default: 7output=fuxi(input)# B C Lat Lon
FuXi: A cascade machine learning forecasting system for 15-day global weather forecast
Published on npj Climate and Atmospheric Science:FuXi: a cascade machine learning forecasting system for 15-day global weather forecast
by Lei Chen, Xiaohui Zhong, Feng Zhang, Yuan Cheng, Yinghui Xu, Yuan Qi, Hao Li
- FengWu Model (https://arxiv.org/pdf/2304.02948v1.pdf)
- FuXi Model (https://arxiv.org/pdf/2306.12873v3.pdf)
- Set a separate window_size for longitude and latitude in the Fuxi model.
- Add more unittest.
- Infer the Pangu model using the pre-trained weights provided by the official Pangu repository.
About
Implementation of the PyTorch version of the Weather Deep Learning Model Zoo.
Topics
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
No releases published
Packages0
No packages published
Contributors2
Uh oh!
There was an error while loading.Please reload this page.