Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
/ccvPublic

C-based/Cached/Core Computer Vision Library, A Modern Computer Vision Library

License

NotificationsYou must be signed in to change notification settings

liuliu/ccv

Repository files navigation

Build Status

  • GitHub-Hosted:Build Status on GitHub UbuntuBuild Status on GitHub macOS
  • Linux x64:Build Status on LinuxBuild Status on Linux CUDA
  • Mac ARM64:Build Status on Mac ARM64
  • Raspberry Pi 4:Build Status on Raspberry Pi 4
  • Clang Analyzer:Analyze Run
  • Test Coverage:Coverage Run

Backstory

I set to build ccv with a minimalism inspiration. That was back in 2010, out of the frustration with the computer vision library then I was using, ccv was meant to be a much easier to deploy, simpler organized code with a bit caution with dependency hygiene. The simplicity and minimalistic nature at then, made it much easier to integrate into any server-side deployment environments.

Portable and Embeddable

Fast forward to now, the world is quite different from then, but ccv adapts pretty well in this new, mobile-first environment. It now runs on Mac OSX, Linux, FreeBSD, Windows*, iPhone, iPad, Android, Raspberry Pi. In fact, anything that has a proper C compiler probably can run ccv. The majority (with notable exception of convolutional networks, which requires a BLAS library) of ccv will just work with no compilation flags or dependencies.

Modern Computer Vision Algorithms

One core concept of ccv development isapplication driven. Thus, ccv ends up implementing a handful state-of-art algorithms. It includes a close to state-of-the-art image classifier, a state-of-the-art frontal face detector, reasonable collection of object detectors for pedestrians and cars, a useful text detection algorithm, a long-term general object tracking algorithm, and the long-standing feature point extraction algorithm.

Clean Interface with Cached Image Preprocessing

Many computer vision tasks nowadays consist of quite a few preprocessing layers: image pyramid generation, color space conversion etc. These potentially redundant operations cannot be easily eliminated within a mature API. ccv provides a built-in cache mechanism that, while maintains a clean function interface, effectively does transparent cache for you.

For computer vision community, there is no shortage of good algorithms, good implementation is what it lacks of. After years, we stuck in between either the high-performance, battle-tested but old algorithm implementations, or the new, shining but Matlab algorithms. ccv is my take on this problem, hope you enjoy it.

Deep Learning

https://libnnc.org

License

ccv source code is distributed under BSD 3-clause License.

ccv's data models and documentations are distributed under Creative Commons Attribution 4.0 International License.

About

C-based/Cached/Core Computer Vision Library, A Modern Computer Vision Library

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

[8]ページ先頭

©2009-2025 Movatter.jp