generated fromlinks-ads/template-python
- Notifications
You must be signed in to change notification settings - Fork2
License
NotificationsYou must be signed in to change notification settings
links-ads/igarss-multi-temporal-hotspot-detection
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
Dataset and code for the paperRapid Wildfire Hotspot Detection Using Self-Supervised Learning On Temporal Remote Sensing Data (IGARSS 2024).
https://arxiv.org/abs/2405.20093v1
Note
Dataset available athf.co/datasets/links-ads/multi-temporal-hotspot-dataset.
First, create a python environment. Here we usedpython 3.9 andtorch 1.9, withCUDA 11.1.We suggest creating a python environment, usingvenv orconda first.
pip install -r requirements.txt -f https://download.pytorch.org/whl/torch_stable.htmlYou can launch a training with the following commands:
$CUDA_VISIBLE_DEVICES=... python src/train.py --catalog_file_train=... --catalog_file_val=.... --catalog_file_test=...<..args>You can specify the following args:
- batch_size
- max_epochs
- lr
- gpus
- log_dir
- seed
- optimizer
- scheduler
- compute_loss_lc (False if not specified)
- positive_weight_loss_class (default 1)
- lc_loss_weight (default 2)
- mask_strategies (use "random_timesteps")
- mask_ratio (default 0.75)
To produce inference maps, run something like the following:
$ CUDA_VISIBLE_DEVICES=... python src/test.py --model_checkpoint <args>@misc{barco2024rapid, title={Rapid Wildfire Hotspot Detection Using Self-Supervised Learning on Temporal Remote Sensing Data}, author={Luca Barco and Angelica Urbanelli and Claudio Rossi}, year={2024}, eprint={2405.20093}, archivePrefix={arXiv}, primaryClass={cs.CV}}About
No description, website, or topics provided.
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
No releases published
Packages0
No packages published
Uh oh!
There was an error while loading.Please reload this page.
