Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

A python tool to perform deep learning experiments on multimodal remote sensing data.

License

NotificationsYou must be signed in to change notification settings

likyoo/Multimodal-Remote-Sensing-Toolkit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

authorlast commitlicense

Open In Colab

Houston2013

MMRS is a python tool to perform deep learning experiments on multi-modal remote sensing data.

This repository is developed on the top ofDeepHyperX .

Models

Currently, the following deep learning methods are available:

Datasets

Quickstart using Colab

You can useMMRS onGoogle Colab Notebook without any installation. You can run all cells without any modifications to see how everything works.

Usage

Start a Visdom server:python -m visdom.server and go tohttp://localhost:8097 to see the visualizations.

Then, run the scriptmain.py.

The most useful arguments are:

  • --model to specify the model (e.g. 'S2ENet', 'Middle_fusion_CNN'),
  • --dataset to specify which dataset to use (e.g. 'Houston2013', 'Trento'),
  • the--cuda switch to run the neural nets on GPU. The tool fallbacks on CPU if this switch is not specified.

There are more parameters that can be used to control more finely the behaviour of the tool. Seepython main.py -h for more information.

Examples:

!python main.py --model S2ENet --flip_augmentation --patch_size 7 --epoch 128 --lr 0.001 --batch_size 64 --seed 0 --dataset Houston2013 --folder '../' --train_set '../Houston2013/TRLabel.mat' --test_set '../Houston2013/TSLabel.mat' --cuda 0

For more features please refer toDeepHyperX.

Citation

If you find this work valuable or use our code in your own research, please consider citing us:

S. Fang, K. Li and Z. Li, "S²ENet: Spatial–Spectral Cross-Modal Enhancement Network for Classification of Hyperspectral and LiDAR Data," in IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, 2022, Art no. 6504205, doi: 10.1109/LGRS.2021.3121028.

Bibtex format :

@ARTICLE{9583936, author={Fang, Sheng and Li, Kaiyu and Li, Zhe}, journal={IEEE Geoscience and Remote Sensing Letters}, title={S²ENet: Spatial–Spectral Cross-Modal Enhancement Network for Classification of Hyperspectral and LiDAR Data}, year={2022}, volume={19}, number={}, pages={1-5}, doi={10.1109/LGRS.2021.3121028}}

About

A python tool to perform deep learning experiments on multimodal remote sensing data.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages


[8]ページ先頭

©2009-2026 Movatter.jp