- Notifications
You must be signed in to change notification settings - Fork12
A python tool to perform deep learning experiments on multimodal remote sensing data.
License
likyoo/Multimodal-Remote-Sensing-Toolkit
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
MMRS is a python tool to perform deep learning experiments on multi-modal remote sensing data.
This repository is developed on the top ofDeepHyperX .
Currently, the following deep learning methods are available:
Houston2013 (Hyperspectral and LiDAR Data): The processed .mat files can be obtained ongoogle drive.
Trento Data (Hyperspectral and LiDAR Data): Trento dataset is provided by Professor Prof. L. Bruzzone from the University of Trento.
You can useMMRS onGoogle Colab Notebook without any installation. You can run all cells without any modifications to see how everything works.
Start a Visdom server:python -m visdom.server and go tohttp://localhost:8097 to see the visualizations.
Then, run the scriptmain.py.
The most useful arguments are:
--modelto specify the model (e.g. 'S2ENet', 'Middle_fusion_CNN'),--datasetto specify which dataset to use (e.g. 'Houston2013', 'Trento'),- the
--cudaswitch to run the neural nets on GPU. The tool fallbacks on CPU if this switch is not specified.
There are more parameters that can be used to control more finely the behaviour of the tool. Seepython main.py -h for more information.
Examples:
!python main.py --model S2ENet --flip_augmentation --patch_size 7 --epoch 128 --lr 0.001 --batch_size 64 --seed 0 --dataset Houston2013 --folder '../' --train_set '../Houston2013/TRLabel.mat' --test_set '../Houston2013/TSLabel.mat' --cuda 0For more features please refer toDeepHyperX.
If you find this work valuable or use our code in your own research, please consider citing us:
S. Fang, K. Li and Z. Li, "S²ENet: Spatial–Spectral Cross-Modal Enhancement Network for Classification of Hyperspectral and LiDAR Data," in IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, 2022, Art no. 6504205, doi: 10.1109/LGRS.2021.3121028.
Bibtex format :
@ARTICLE{9583936, author={Fang, Sheng and Li, Kaiyu and Li, Zhe}, journal={IEEE Geoscience and Remote Sensing Letters}, title={S²ENet: Spatial–Spectral Cross-Modal Enhancement Network for Classification of Hyperspectral and LiDAR Data}, year={2022}, volume={19}, number={}, pages={1-5}, doi={10.1109/LGRS.2021.3121028}}
About
A python tool to perform deep learning experiments on multimodal remote sensing data.
Topics
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
