- Notifications
You must be signed in to change notification settings - Fork0
We write your reusable computer vision tools. 💜
License
lijiepublic/supervision
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
We write your reusable computer vision tools. Whether you need to load your dataset from your hard drive, draw detections on an image or video, or count how many detections are in a zone. You can count on us! 🤝
Pip install the supervision package in aPython>=3.8 environment.
pip install supervision
Read more about conda, mamba, and installing from source in ourguide.
Supervision was designed to be model agnostic. Just plug in any classification, detection, or segmentation model. For your convenience, we have createdconnectors for the most popular libraries like Ultralytics, Transformers, or MMDetection.
importcv2importsupervisionassvfromultralyticsimportYOLOimage=cv2.imread(...)model=YOLO("yolov8s.pt")result=model(image)[0]detections=sv.Detections.from_ultralytics(result)len(detections)# 5
👉 more model connectors
inference
Running withInference requires aRoboflow API KEY.
importcv2importsupervisionassvfrominferenceimportget_modelimage=cv2.imread(...)model=get_model(model_id="yolov8s-640",api_key=<ROBOFLOWAPIKEY>)result=model.infer(image)[0]detections=sv.Detections.from_inference(result)len(detections)# 5
Supervision offers a wide range of highly customizableannotators, allowing you to compose the perfect visualization for your use case.
importcv2importsupervisionassvimage=cv2.imread(...)detections=sv.Detections(...)box_annotator=sv.BoxAnnotator()annotated_frame=box_annotator.annotate(scene=image.copy(),detections=detections)
supervision-0.16.0-annotators.mp4
Supervision provides a set ofutils that allow you to load, split, merge, and save datasets in one of the supported formats.
importsupervisionassvfromroboflowimportRoboflowproject=Roboflow().workspace(<WORKSPACE_ID>).project(<PROJECT_ID>)dataset=project.version(<PROJECT_VERSION>).download("coco")ds=sv.DetectionDataset.from_coco(images_directory_path=f"{dataset.location}/train",annotations_path=f"{dataset.location}/train/_annotations.coco.json",)path,image,annotation=ds[0]# loads image on demandforpath,image,annotationinds:# loads image on demand
👉 more dataset utils
load
dataset=sv.DetectionDataset.from_yolo(images_directory_path=...,annotations_directory_path=...,data_yaml_path=...)dataset=sv.DetectionDataset.from_pascal_voc(images_directory_path=...,annotations_directory_path=...)dataset=sv.DetectionDataset.from_coco(images_directory_path=...,annotations_path=...)
split
train_dataset,test_dataset=dataset.split(split_ratio=0.7)test_dataset,valid_dataset=test_dataset.split(split_ratio=0.5)len(train_dataset),len(test_dataset),len(valid_dataset)# (700, 150, 150)
merge
ds_1=sv.DetectionDataset(...)len(ds_1)# 100ds_1.classes# ['dog', 'person']ds_2=sv.DetectionDataset(...)len(ds_2)# 200ds_2.classes# ['cat']ds_merged=sv.DetectionDataset.merge([ds_1,ds_2])len(ds_merged)# 300ds_merged.classes# ['cat', 'dog', 'person']
save
dataset.as_yolo(images_directory_path=...,annotations_directory_path=...,data_yaml_path=...)dataset.as_pascal_voc(images_directory_path=...,annotations_directory_path=...)dataset.as_coco(images_directory_path=...,annotations_path=...)
convert
sv.DetectionDataset.from_yolo(images_directory_path=...,annotations_directory_path=...,data_yaml_path=...).as_pascal_voc(images_directory_path=...,annotations_directory_path=...)
Want to learn how to use Supervision? Explore ourhow-to guides,end-to-end examples,cheatsheet, andcookbooks!
Dwell Time Analysis with Computer Vision | Real-Time Stream Processing
Learn how to use computer vision to analyze wait times and optimize processes. This tutorial covers object detection, tracking, and calculating time spent in designated zones. Use these techniques to improve customer experience in retail, traffic management, or other scenarios.
Speed Estimation & Vehicle Tracking | Computer Vision | Open Source
Learn how to track and estimate the speed of vehicles using YOLO, ByteTrack, and Roboflow Inference. This comprehensive tutorial covers object detection, multi-object tracking, filtering detections, perspective transformation, speed estimation, visualization improvements, and more.
Did you build something cool using supervision?Let us know!
football-players-tracking-25.mp4
traffic_analysis_result.mov
vehicles-step-7-new.mp4
Visit ourdocumentation page to learn how supervision can help you build computer vision applications faster and more reliably.
We love your input! Please see ourcontributing guide to get started. Thank you 🙏 to all our contributors!
About
We write your reusable computer vision tools. 💜
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
Packages0
Languages
- Python100.0%