Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

We write your reusable computer vision tools. 💜

License

NotificationsYou must be signed in to change notification settings

lijiepublic/supervision

 
 

Repository files navigation

👋 hello

We write your reusable computer vision tools. Whether you need to load your dataset from your hard drive, draw detections on an image or video, or count how many detections are in a zone. You can count on us! 🤝

💻 install

Pip install the supervision package in aPython>=3.8 environment.

pip install supervision

Read more about conda, mamba, and installing from source in ourguide.

🔥 quickstart

models

Supervision was designed to be model agnostic. Just plug in any classification, detection, or segmentation model. For your convenience, we have createdconnectors for the most popular libraries like Ultralytics, Transformers, or MMDetection.

importcv2importsupervisionassvfromultralyticsimportYOLOimage=cv2.imread(...)model=YOLO("yolov8s.pt")result=model(image)[0]detections=sv.Detections.from_ultralytics(result)len(detections)# 5
👉 more model connectors
  • inference

    Running withInference requires aRoboflow API KEY.

    importcv2importsupervisionassvfrominferenceimportget_modelimage=cv2.imread(...)model=get_model(model_id="yolov8s-640",api_key=<ROBOFLOWAPIKEY>)result=model.infer(image)[0]detections=sv.Detections.from_inference(result)len(detections)# 5

annotators

Supervision offers a wide range of highly customizableannotators, allowing you to compose the perfect visualization for your use case.

importcv2importsupervisionassvimage=cv2.imread(...)detections=sv.Detections(...)box_annotator=sv.BoxAnnotator()annotated_frame=box_annotator.annotate(scene=image.copy(),detections=detections)
supervision-0.16.0-annotators.mp4

datasets

Supervision provides a set ofutils that allow you to load, split, merge, and save datasets in one of the supported formats.

importsupervisionassvfromroboflowimportRoboflowproject=Roboflow().workspace(<WORKSPACE_ID>).project(<PROJECT_ID>)dataset=project.version(<PROJECT_VERSION>).download("coco")ds=sv.DetectionDataset.from_coco(images_directory_path=f"{dataset.location}/train",annotations_path=f"{dataset.location}/train/_annotations.coco.json",)path,image,annotation=ds[0]# loads image on demandforpath,image,annotationinds:# loads image on demand
👉 more dataset utils
  • load

    dataset=sv.DetectionDataset.from_yolo(images_directory_path=...,annotations_directory_path=...,data_yaml_path=...)dataset=sv.DetectionDataset.from_pascal_voc(images_directory_path=...,annotations_directory_path=...)dataset=sv.DetectionDataset.from_coco(images_directory_path=...,annotations_path=...)
  • split

    train_dataset,test_dataset=dataset.split(split_ratio=0.7)test_dataset,valid_dataset=test_dataset.split(split_ratio=0.5)len(train_dataset),len(test_dataset),len(valid_dataset)# (700, 150, 150)
  • merge

    ds_1=sv.DetectionDataset(...)len(ds_1)# 100ds_1.classes# ['dog', 'person']ds_2=sv.DetectionDataset(...)len(ds_2)# 200ds_2.classes# ['cat']ds_merged=sv.DetectionDataset.merge([ds_1,ds_2])len(ds_merged)# 300ds_merged.classes# ['cat', 'dog', 'person']
  • save

    dataset.as_yolo(images_directory_path=...,annotations_directory_path=...,data_yaml_path=...)dataset.as_pascal_voc(images_directory_path=...,annotations_directory_path=...)dataset.as_coco(images_directory_path=...,annotations_path=...)
  • convert

    sv.DetectionDataset.from_yolo(images_directory_path=...,annotations_directory_path=...,data_yaml_path=...).as_pascal_voc(images_directory_path=...,annotations_directory_path=...)

🎬 tutorials

Want to learn how to use Supervision? Explore ourhow-to guides,end-to-end examples,cheatsheet, andcookbooks!


Dwell Time Analysis with Computer Vision | Real-Time Stream ProcessingDwell Time Analysis with Computer Vision | Real-Time Stream Processing

Created: 5 Apr 2024

Learn how to use computer vision to analyze wait times and optimize processes. This tutorial covers object detection, tracking, and calculating time spent in designated zones. Use these techniques to improve customer experience in retail, traffic management, or other scenarios.


Speed Estimation & Vehicle Tracking | Computer Vision | Open SourceSpeed Estimation & Vehicle Tracking | Computer Vision | Open Source

Created: 11 Jan 2024

Learn how to track and estimate the speed of vehicles using YOLO, ByteTrack, and Roboflow Inference. This comprehensive tutorial covers object detection, multi-object tracking, filtering detections, perspective transformation, speed estimation, visualization improvements, and more.

💜 built with supervision

Did you build something cool using supervision?Let us know!

football-players-tracking-25.mp4
traffic_analysis_result.mov
vehicles-step-7-new.mp4

📚 documentation

Visit ourdocumentation page to learn how supervision can help you build computer vision applications faster and more reliably.

🏆 contribution

We love your input! Please see ourcontributing guide to get started. Thank you 🙏 to all our contributors!


About

We write your reusable computer vision tools. 💜

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python100.0%

[8]ページ先頭

©2009-2025 Movatter.jp