Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commitca6bec0

Browse files
committed
Pushing the docs to dev/ for branch: master, commit 6e664528a7d12998c8681a065cac0f6e5ba5171a
1 parent98eea8b commitca6bec0

File tree

935 files changed

+2710
-2710
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

935 files changed

+2710
-2710
lines changed
0 Bytes
Binary file not shown.
0 Bytes
Binary file not shown.

‎dev/_downloads/scikit-learn-docs.pdf

5.07 KB
Binary file not shown.
Binary file not shown.
-441 Bytes
-223 Bytes
-223 Bytes
-23 Bytes
-421 Bytes
-421 Bytes
-324 Bytes
-324 Bytes
229 Bytes
229 Bytes
-58 Bytes
279 Bytes
-281 Bytes
419 Bytes
109 Bytes
248 Bytes
248 Bytes
-39 Bytes
-39 Bytes
410 Bytes
410 Bytes
-58 Bytes
-58 Bytes
45 Bytes
45 Bytes
-315 Bytes
-315 Bytes
-148 Bytes
-17 Bytes
-250 Bytes
-250 Bytes
-106 Bytes
347 Bytes
-227 Bytes
-3 Bytes
-1 Bytes
56 Bytes
56 Bytes
111 Bytes
-4 Bytes

‎dev/_sources/auto_examples/applications/plot_model_complexity_influence.txt

Lines changed: 15 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -226,69 +226,69 @@ main code
226226
learning_rate='optimal', loss='modified_huber', n_iter=5, n_jobs=1,
227227
penalty='elasticnet', power_t=0.5, random_state=None, shuffle=True,
228228
verbose=0, warm_start=False)
229-
Complexity: 4454 | Hamming Loss (Misclassification Ratio): 0.2501 | Pred. Time: 0.028643s
229+
Complexity: 4454 | Hamming Loss (Misclassification Ratio): 0.2501 | Pred. Time: 0.025108s
230230

231231
Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
232232
eta0=0.0, fit_intercept=True, l1_ratio=0.5, learning_rate='optimal',
233233
loss='modified_huber', n_iter=5, n_jobs=1, penalty='elasticnet',
234234
power_t=0.5, random_state=None, shuffle=True, verbose=0,
235235
warm_start=False)
236-
Complexity: 1624 | Hamming Loss (Misclassification Ratio): 0.2923 | Pred. Time: 0.020735s
236+
Complexity: 1624 | Hamming Loss (Misclassification Ratio): 0.2923 | Pred. Time: 0.018948s
237237

238238
Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
239239
eta0=0.0, fit_intercept=True, l1_ratio=0.75,
240240
learning_rate='optimal', loss='modified_huber', n_iter=5, n_jobs=1,
241241
penalty='elasticnet', power_t=0.5, random_state=None, shuffle=True,
242242
verbose=0, warm_start=False)
243-
Complexity: 873 | Hamming Loss (Misclassification Ratio): 0.3191 | Pred. Time: 0.017476s
243+
Complexity: 873 | Hamming Loss (Misclassification Ratio): 0.3191 | Pred. Time: 0.015756s
244244

245245
Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
246246
eta0=0.0, fit_intercept=True, l1_ratio=0.9, learning_rate='optimal',
247247
loss='modified_huber', n_iter=5, n_jobs=1, penalty='elasticnet',
248248
power_t=0.5, random_state=None, shuffle=True, verbose=0,
249249
warm_start=False)
250-
Complexity: 655 | Hamming Loss (Misclassification Ratio): 0.3252 | Pred. Time: 0.015822s
250+
Complexity: 655 | Hamming Loss (Misclassification Ratio): 0.3252 | Pred. Time: 0.014044s
251251

252252
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
253253
kernel='rbf', max_iter=-1, nu=0.1, shrinking=True, tol=0.001,
254254
verbose=False)
255-
Complexity: 69 | MSE: 31.8133 | Pred. Time: 0.000390s
255+
Complexity: 69 | MSE: 31.8133 | Pred. Time: 0.000361s
256256

257257
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
258258
kernel='rbf', max_iter=-1, nu=0.25, shrinking=True, tol=0.001,
259259
verbose=False)
260-
Complexity: 136 | MSE: 25.6140 | Pred. Time: 0.000693s
260+
Complexity: 136 | MSE: 25.6140 | Pred. Time: 0.000642s
261261

262262
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
263263
kernel='rbf', max_iter=-1, nu=0.5, shrinking=True, tol=0.001,
264264
verbose=False)
265-
Complexity: 243 | MSE: 22.3315 | Pred. Time: 0.001189s
265+
Complexity: 243 | MSE: 22.3315 | Pred. Time: 0.001103s
266266

267267
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
268268
kernel='rbf', max_iter=-1, nu=0.75, shrinking=True, tol=0.001,
269269
verbose=False)
270-
Complexity: 350 | MSE: 21.3679 | Pred. Time: 0.001670s
270+
Complexity: 350 | MSE: 21.3679 | Pred. Time: 0.001561s
271271

272272
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
273273
kernel='rbf', max_iter=-1, nu=0.9, shrinking=True, tol=0.001,
274274
verbose=False)
275-
Complexity: 404 | MSE: 21.0915 | Pred. Time: 0.001919s
275+
Complexity: 404 | MSE: 21.0915 | Pred. Time: 0.001784s
276276

277277
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
278278
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
279279
max_leaf_nodes=None, min_impurity_split=1e-07,
280280
min_samples_leaf=1, min_samples_split=2,
281281
min_weight_fraction_leaf=0.0, n_estimators=10, presort='auto',
282282
random_state=None, subsample=1.0, verbose=0, warm_start=False)
283-
Complexity: 10 | MSE: 28.9793 | Pred. Time: 0.000119s
283+
Complexity: 10 | MSE: 28.9793 | Pred. Time: 0.000111s
284284

285285
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
286286
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
287287
max_leaf_nodes=None, min_impurity_split=1e-07,
288288
min_samples_leaf=1, min_samples_split=2,
289289
min_weight_fraction_leaf=0.0, n_estimators=50, presort='auto',
290290
random_state=None, subsample=1.0, verbose=0, warm_start=False)
291-
Complexity: 50 | MSE: 8.3398 | Pred. Time: 0.000212s
291+
Complexity: 50 | MSE: 8.3398 | Pred. Time: 0.000194s
292292

293293
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
294294
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
@@ -297,7 +297,7 @@ main code
297297
min_weight_fraction_leaf=0.0, n_estimators=100,
298298
presort='auto', random_state=None, subsample=1.0, verbose=0,
299299
warm_start=False)
300-
Complexity: 100 | MSE: 7.0096 | Pred. Time: 0.000302s
300+
Complexity: 100 | MSE: 7.0096 | Pred. Time: 0.000279s
301301

302302
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
303303
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
@@ -306,7 +306,7 @@ main code
306306
min_weight_fraction_leaf=0.0, n_estimators=200,
307307
presort='auto', random_state=None, subsample=1.0, verbose=0,
308308
warm_start=False)
309-
Complexity: 200 | MSE: 6.1836 | Pred. Time: 0.000478s
309+
Complexity: 200 | MSE: 6.1836 | Pred. Time: 0.000445s
310310

311311
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
312312
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
@@ -315,10 +315,10 @@ main code
315315
min_weight_fraction_leaf=0.0, n_estimators=500,
316316
presort='auto', random_state=None, subsample=1.0, verbose=0,
317317
warm_start=False)
318-
Complexity: 500 | MSE: 6.3426 | Pred. Time: 0.001051s
318+
Complexity: 500 | MSE: 6.3426 | Pred. Time: 0.000965s
319319

320320

321-
**Total running time of the script:** ( 0 minutes25.022 seconds)
321+
**Total running time of the script:** ( 0 minutes22.421 seconds)
322322

323323

324324

‎dev/_sources/auto_examples/applications/plot_out_of_core_classification.txt

Lines changed: 29 additions & 29 deletions
Original file line numberDiff line numberDiff line change
@@ -356,46 +356,46 @@ maximum
356356
Out::
357357

358358
Test set is 878 documents (108 positive)
359-
Passive-Aggressive classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.913 in 1.74s (553 docs/s)
360-
Perceptron classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.921 in 1.74s (552 docs/s)
361-
SGD classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.925 in 1.75s (550 docs/s)
362-
NB Multinomial classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.877 in 1.78s (539 docs/s)
359+
Passive-Aggressive classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.913 in 1.61s (598 docs/s)
360+
Perceptron classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.921 in 1.61s (596 docs/s)
361+
SGD classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.925 in 1.62s (595 docs/s)
362+
NB Multinomial classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.877 in 1.65s (582 docs/s)
363363

364364

365-
Passive-Aggressive classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.946 in5.07s (771 docs/s)
366-
Perceptron classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.926 in5.07s (770 docs/s)
367-
SGD classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.945 in5.08s (770 docs/s)
368-
NB Multinomial classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.885 in5.11s (764 docs/s)
365+
Passive-Aggressive classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.946 in4.62s (845 docs/s)
366+
Perceptron classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.926 in4.63s (845 docs/s)
367+
SGD classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.945 in4.63s (844 docs/s)
368+
NB Multinomial classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.885 in4.67s (838 docs/s)
369369

370370

371-
Passive-Aggressive classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.951 in8.41s (811 docs/s)
372-
Perceptron classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.949 in8.41s (811 docs/s)
373-
SGD classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.938 in8.41s (810 docs/s)
374-
NB Multinomial classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.899 in8.45s (807 docs/s)
371+
Passive-Aggressive classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.951 in7.77s (877 docs/s)
372+
Perceptron classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.949 in7.78s (877 docs/s)
373+
SGD classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.938 in7.78s (876 docs/s)
374+
NB Multinomial classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.899 in7.81s (872 docs/s)
375375

376376

377-
Passive-Aggressive classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.964 in11.79s (827 docs/s)
378-
Perceptron classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.950 in11.80s (827 docs/s)
379-
SGD classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.958 in11.80s (827 docs/s)
380-
NB Multinomial classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.909 in11.84s (824 docs/s)
377+
Passive-Aggressive classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.964 in10.81s (902 docs/s)
378+
Perceptron classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.950 in10.82s (902 docs/s)
379+
SGD classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.958 in10.82s (902 docs/s)
380+
NB Multinomial classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.909 in10.85s (899 docs/s)
381381

382382

383-
Passive-Aggressive classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in14.79s (789 docs/s)
384-
Perceptron classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in14.79s (789 docs/s)
385-
SGD classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in14.80s (789 docs/s)
386-
NB Multinomial classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.916 in14.83s (787 docs/s)
383+
Passive-Aggressive classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in13.56s (861 docs/s)
384+
Perceptron classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in13.56s (861 docs/s)
385+
SGD classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in13.56s (861 docs/s)
386+
NB Multinomial classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.916 in13.60s (859 docs/s)
387387

388388

389-
Passive-Aggressive classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.966 in18.15s (805 docs/s)
390-
Perceptron classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.956 in18.15s (805 docs/s)
391-
SGD classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.954 in18.16s (805 docs/s)
392-
NB Multinomial classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.926 in18.19s (803 docs/s)
389+
Passive-Aggressive classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.966 in16.70s (875 docs/s)
390+
Perceptron classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.956 in16.71s (875 docs/s)
391+
SGD classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.954 in16.71s (875 docs/s)
392+
NB Multinomial classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.926 in16.74s (873 docs/s)
393393

394394

395-
Passive-Aggressive classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.954 in21.31s (814 docs/s)
396-
Perceptron classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.957 in21.32s (814 docs/s)
397-
SGD classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.949 in21.32s (814 docs/s)
398-
NB Multinomial classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.932 in21.36s (812 docs/s)
395+
Passive-Aggressive classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.954 in19.66s (882 docs/s)
396+
Perceptron classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.957 in19.67s (882 docs/s)
397+
SGD classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.949 in19.67s (882 docs/s)
398+
NB Multinomial classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.932 in19.70s (881 docs/s)
399399

400400

401401
Plot results
@@ -526,7 +526,7 @@ Plot results
526526

527527

528528

529-
**Total running time of the script:** ( 0 minutes23.295 seconds)
529+
**Total running time of the script:** ( 0 minutes21.558 seconds)
530530

531531

532532

‎dev/_sources/auto_examples/applications/plot_outlier_detection_housing.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -158,7 +158,7 @@ risk of over-fitting the data.
158158

159159
plt.show()
160160

161-
**Total running time of the script:** ( 0 minutes 4.691 seconds)
161+
**Total running time of the script:** ( 0 minutes 4.366 seconds)
162162

163163

164164

‎dev/_sources/auto_examples/applications/plot_prediction_latency.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -372,10 +372,10 @@ main code
372372
benchmarking with 100 features
373373
benchmarking with 250 features
374374
benchmarking with 500 features
375-
example run in 3.85s
375+
example run in 3.54s
376376

377377

378-
**Total running time of the script:** ( 0 minutes 3.848 seconds)
378+
**Total running time of the script:** ( 0 minutes 3.540 seconds)
379379

380380

381381

‎dev/_sources/auto_examples/applications/plot_species_distribution_modeling.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -65,7 +65,7 @@ References
6565

6666
Area under the ROC curve : 0.993919
6767

68-
time elapsed: 6.82s
68+
time elapsed: 6.35s
6969

7070

7171

@@ -247,7 +247,7 @@ References
247247
plot_species_distribution()
248248
plt.show()
249249

250-
**Total running time of the script:** ( 0 minutes 6.818 seconds)
250+
**Total running time of the script:** ( 0 minutes 6.355 seconds)
251251

252252

253253

‎dev/_sources/auto_examples/applications/plot_stock_market.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -340,7 +340,7 @@ Visualization
340340

341341

342342

343-
**Total running time of the script:** ( 0 minutes11.560 seconds)
343+
**Total running time of the script:** ( 0 minutes52.040 seconds)
344344

345345

346346

‎dev/_sources/auto_examples/applications/plot_tomography_l1_reconstruction.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -164,7 +164,7 @@ contributed to fewer projections than the central disk.
164164

165165
plt.show()
166166

167-
**Total running time of the script:** ( 0 minutes 9.914 seconds)
167+
**Total running time of the script:** ( 0 minutes 9.281 seconds)
168168

169169

170170

‎dev/_sources/auto_examples/bicluster/plot_spectral_biclustering.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -106,7 +106,7 @@ representation of the checkerboard structure.
106106

107107
plt.show()
108108

109-
**Total running time of the script:** ( 0 minutes 0.953 seconds)
109+
**Total running time of the script:** ( 0 minutes 0.893 seconds)
110110

111111

112112

‎dev/_sources/auto_examples/bicluster/plot_spectral_coclustering.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -93,7 +93,7 @@ the biclusters.
9393

9494
plt.show()
9595

96-
**Total running time of the script:** ( 0 minutes 0.239 seconds)
96+
**Total running time of the script:** ( 0 minutes 0.232 seconds)
9797

9898

9999

‎dev/_sources/auto_examples/calibration/plot_calibration.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -159,7 +159,7 @@ Plot the data and the predicted probabilities
159159

160160

161161

162-
**Total running time of the script:** ( 0 minutes 0.279 seconds)
162+
**Total running time of the script:** ( 0 minutes 0.260 seconds)
163163

164164

165165

‎dev/_sources/auto_examples/calibration/plot_calibration_curve.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -214,7 +214,7 @@ but not where it is transposed-sigmoid (e.g., Gaussian naive Bayes).
214214

215215
plt.show()
216216

217-
**Total running time of the script:** ( 0 minutes 2.255 seconds)
217+
**Total running time of the script:** ( 0 minutes 2.117 seconds)
218218

219219

220220

‎dev/_sources/auto_examples/calibration/plot_calibration_multiclass.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -204,7 +204,7 @@ would have resulted in a similar decrease in log-loss.
204204

205205
plt.show()
206206

207-
**Total running time of the script:** ( 0 minutes 0.707 seconds)
207+
**Total running time of the script:** ( 0 minutes 0.655 seconds)
208208

209209

210210

‎dev/_sources/auto_examples/calibration/plot_compare_calibration.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -147,7 +147,7 @@ Plot calibration plots
147147

148148

149149

150-
**Total running time of the script:** ( 0 minutes 2.636 seconds)
150+
**Total running time of the script:** ( 0 minutes 2.502 seconds)
151151

152152

153153

‎dev/_sources/auto_examples/classification/plot_classification_probability.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -113,7 +113,7 @@ a result it can identify only the first class.
113113

114114
plt.show()
115115

116-
**Total running time of the script:** ( 0 minutes 2.539 seconds)
116+
**Total running time of the script:** ( 0 minutes 2.467 seconds)
117117

118118

119119

‎dev/_sources/auto_examples/classification/plot_classifier_comparison.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -153,7 +153,7 @@ set.
153153
plt.tight_layout()
154154
plt.show()
155155

156-
**Total running time of the script:** ( 0 minutes8.016 seconds)
156+
**Total running time of the script:** ( 0 minutes7.582 seconds)
157157

158158

159159

‎dev/_sources/auto_examples/classification/plot_digits_classification.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -120,7 +120,7 @@ This example is commented in the
120120

121121
plt.show()
122122

123-
**Total running time of the script:** ( 0 minutes 0.773 seconds)
123+
**Total running time of the script:** ( 0 minutes 0.723 seconds)
124124

125125

126126

‎dev/_sources/auto_examples/classification/plot_lda.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -86,7 +86,7 @@ Shows how shrinkage improves classification.
8686
shrinkage Linear Discriminant Analysis (1 discriminative feature)')
8787
plt.show()
8888

89-
**Total running time of the script:** ( 0 minutes6.122 seconds)
89+
**Total running time of the script:** ( 0 minutes5.650 seconds)
9090

9191

9292

‎dev/_sources/auto_examples/classification/plot_lda_qda.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -204,7 +204,7 @@ plot functions
204204

205205

206206

207-
**Total running time of the script:** ( 0 minutes 0.419 seconds)
207+
**Total running time of the script:** ( 0 minutes 0.384 seconds)
208208

209209

210210

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp