Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Abstractions from Category theory with simple description & implementation, links to further resources.

License

NotificationsYou must be signed in to change notification settings

lemastero/scala_typeclassopedia

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Scala CIScala Steward badge

Scala typeclassopedia

classDiagram   Functor~F~ <|-- Apply~F~   Apply <|-- FlatMap~F~   Functor <|-- Traverse~F~   Foldable~F~ <|-- Traverse   FlatMap~F~ <|-- Monad~F~   Apply~F~ <|-- Applicative~F~   Apply <|-- CoflatMap~F~   CoflatMap <|-- Comonad~F~   Applicative <|-- Selective~F~   Selective <|-- Monad   Applicative <|-- Alternative~F~   MonoidK~F~ <|-- Alternative   Applicative <|-- ApplicativeError~F~   ApplicativeError <|-- MonadError~F~   Monad <|-- MonadError   Monad <|-- Bimonad~F~   Comonad <|-- Bimonad   class Functor {     ) map(F[A], A => B): F[B]   }   class Foldable {     ) foldLeft(F[A], B, Tuple2[B,A] => B): B   }   class Traverse {     ) traverse(F[A], A => G[B]): G[F[B]]   }   class Apply {     ) ap(F[A], F[A => B]): F[B]     ) map2(Tuple2[A,B] => C, F[A], F[B]): F[C]   }   class Applicative {     ) pure(A): F[A]   }   class Selective {     ) select(F[Either[A,B]], F[A=>B]): F[B]   }   class FlatMap {     ) flatmap(F[A], A => F[B]): F[B]   }   class Monad {     ) flatten(F[F[A]]): F[A]   }   class ApplicativeError {     ) raiseError(E): F[A]   }   class CoflatMap {     ) extend(F[A], F[A] => B): F[B]   }   class Comonad {     ) extract(W[A]): A   }   class MonoidK {     ) empty(): F[A]     ) combine(F[A], F[A]): F[A]   }   class Alternative {     ) some(F[A]): F[NonEmptyList[A]]     ) many(F[A]): F[List[A]]   }
Loading
classDiagram   Bifoldable~P[+_,+_]~ <|-- Bitraverse~P[+_,+_]~   Bifunctor~P[+_,+_]~ <|-- Bitraverse   Bifunctor <|-- Biapply~P[+_,+_]~   Biapply <|-- Biapplicative~P[+_,+_]~   Functor~F[+_]~ <|-- Bifunctor   Functor <|-- Bifunctor   Functor <|-- Profunctor~P[-_,+_]~   Bifunctor <|-- Zivariant~Z[-_,+_,+_]~   Profunctor <|-- Zivariant  class Functor {    ) map(F[A], A => B): F[B]  }  class Profunctor {    ) dimap(AA => A, B => BB): P[A,B] => P[AA,BB]  }  class Bifunctor {    ) bimap(A => AA, B => BB): P[A,B] => P[AA,BB]  }  class Bifoldable {    ) bifoldLeft(F[A,B], C, (C,A) => C, (C,B) => C): C  }  class Bitraverse {    ) bitraverse[G: Applicative](F[A,B], A=>G[C], B => G[D]): G[F[C,D]]  }  class Biapply {    ) biApply(F[A,B], F[A=>AA,B=>BB]): F[AA,BB]  }  class Biapplicative {    ) bipure(a: A, b: B): F[A,B]  }  class Zivariant {    ) zimap(AA => A, B => BB, C => CC): P[A,B,C] => P[AA,BB,CC]  }
Loading
classDiagram   Ran~G[_], H[_], A~ <|-- Yoneda~H[_], A~   Lan~G[_], H[_], A~ <|-- CoYoneda~H[_], A~   Ran <|-- Codensity~G[_], A~   Lan <|-- Density~G[_], A~  class Ran {    // Right Kan Extension    ) run[B](A => G[B]): H[B]  }  class Yoneda {    ) run[B](A => B): H[R]  }  class Codensity {    ) run[B](A => G[B]): G[B]  }  class Lan {    // Left Kan Extension    fz: H[Z]    run: G[Z] => A  }  class CoYoneda {    fz: H[Z]    run: Z => A  }  class Density {    fz: G[Z]    run: G[Z] => A  }  class Day~G[_], H[_], A~ {    // Day convolution    gb: G[Z]    hb: H[X]    ) run: (Z,X) => A  }
Loading
classDiagram   Functor~F[+_]~ <|-- Bifunctor~F[+_,+_]~   Functor <|-- Bifunctor   Functor <|-- Profunctor~F[-_,+_]~   Contravariant~F[-_]~ <|-- Profunctor   Semicategory~F[-_,+_]~ <|-- Category~F[-_,+_]~   Category <|-- Arrow~F[-_,+_]~   Bifunctor <|-- Zivariant~F[-_,+_,+_]~   Profunctor <|-- Zivariant   Profunctor <|-- Strong~F[-_,+_]~   Strong -- Arrow   Arrow <|-- ArrowApply~F[-_,+_]~   Arrow <|-- CommutativeArrow~F[-_,+_]~   Arrow <|-- ArrowLoop~F[-_,+_]~   Profunctor <|-- Choice~F[-_,+_]~   Arrow <|-- ArrowZero~F[-_,+_]~   Arrow <|-- ArrowChoice~F[-_,+_]~   Choice <|-- ArrowChoice   class Functor {     ) map(F[A], A => B): F[B]   }   class Contravariant {     ) contramap(F[A], B => A): F[B]   }   class Semicategory {     ) compose[A,B,C](F[B,C], F[A,B]): F[A,C]   }  class Category {    ) id[A]: F[A,A]  }  class Profunctor {    ) dimap(AA => A, B => BB): P[A,B] => P[AA,BB]  }  class Bifunctor {    ) bimap(A => AA, B => BB): P[A,B] => P[AA,BB]  }  class Zivariant {    ) zimap(AA => A, B => BB, C => CC): P[A,B,C] => P[AA,BB,CC]  }  class Strong {    ) first(P[A,B]): P[(A,C), (B,C)]  }  class Choice {    ) left(P[A,B]): P[Either[A, C], Either[B, C]]  }  class Arrow {    ) arr(A => B): F[A, B]  }  class ArrowZero {    ) zeroArr(): P[A,B]  }  class ArrowApply {    ) app(P[P[B,C],B]): C  }  class ArrowApply {    ) app(P[P[B,C],B]): C  }  class ArrowLoop {    ) loop(P[(B,D), (C,D)]: P[B,C]  }
Loading
TypesLogicCategory TheoryHomotopy Theory
Voidfalseinitial objectempty space
Unittrueterminal objectsingleton
Sum (Coproduct) Eiter[A,B]A v B disjunctioncoproductcoproduct space
Product (A,B)A ∧ B conjunctionproductproduct space
A => BA => B implicationexponential objectsingleton
A => Voidnegationexp. obj. into initial obj.

Resources covering topics about FP and category theory in great details:

Computational trinitarianism resources

About

Abstractions from Category theory with simple description & implementation, links to further resources.

Topics

Resources

License

Stars

Watchers

Forks

Contributors9

Languages


[8]ページ先頭

©2009-2025 Movatter.jp