- Notifications
You must be signed in to change notification settings - Fork474
fix: move processing implementation to a separate unit#632
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to ourterms of service andprivacy statement. We’ll occasionally send you account related emails.
Already on GitHub?Sign in to your account
Open
pminev wants to merge1 commit intoleejet:masterChoose a base branch fromalpaca-core:fix/build-preprocessing
base:master
Could not load branches
Branch not found:{{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline, and old review comments may become outdated.
+233 −214
Open
Changes fromall commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Uh oh!
There was an error while loading.Please reload this page.
Jump to
Jump to file
Failed to load files.
Loading
Uh oh!
There was an error while loading.Please reload this page.
Diff view
Diff view
There are no files selected for viewing
2 changes: 1 addition & 1 deletionexamples/cli/main.cpp
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.Learn more about bidirectional Unicode characters
222 changes: 222 additions & 0 deletionspreprocessing.cpp
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,222 @@ | ||
| #include "preprocessing.hpp" | ||
| #define M_PI_ 3.14159265358979323846 | ||
| void convolve(struct ggml_tensor* input, struct ggml_tensor* output, struct ggml_tensor* kernel, int padding) { | ||
| struct ggml_init_params params; | ||
| params.mem_size = 20 * 1024 * 1024; // 10 | ||
| params.mem_buffer = NULL; | ||
| params.no_alloc = false; | ||
| struct ggml_context* ctx0 = ggml_init(params); | ||
| struct ggml_tensor* kernel_fp16 = ggml_new_tensor_4d(ctx0, GGML_TYPE_F16, kernel->ne[0], kernel->ne[1], 1, 1); | ||
| ggml_fp32_to_fp16_row((float*)kernel->data, (ggml_fp16_t*)kernel_fp16->data, ggml_nelements(kernel)); | ||
| ggml_tensor* h = ggml_conv_2d(ctx0, kernel_fp16, input, 1, 1, padding, padding, 1, 1); | ||
| ggml_cgraph* gf = ggml_new_graph(ctx0); | ||
| ggml_build_forward_expand(gf, ggml_cpy(ctx0, h, output)); | ||
| ggml_graph_compute_with_ctx(ctx0, gf, 1); | ||
| ggml_free(ctx0); | ||
| } | ||
| void gaussian_kernel(struct ggml_tensor* kernel) { | ||
| int ks_mid = kernel->ne[0] / 2; | ||
| float sigma = 1.4f; | ||
| float normal = 1.f / (2.0f * M_PI_ * powf(sigma, 2.0f)); | ||
| for (int y = 0; y < kernel->ne[0]; y++) { | ||
| float gx = -ks_mid + y; | ||
| for (int x = 0; x < kernel->ne[1]; x++) { | ||
| float gy = -ks_mid + x; | ||
| float k_ = expf(-((gx * gx + gy * gy) / (2.0f * powf(sigma, 2.0f)))) * normal; | ||
| ggml_tensor_set_f32(kernel, k_, x, y); | ||
| } | ||
| } | ||
| } | ||
| void grayscale(struct ggml_tensor* rgb_img, struct ggml_tensor* grayscale) { | ||
| for (int iy = 0; iy < rgb_img->ne[1]; iy++) { | ||
| for (int ix = 0; ix < rgb_img->ne[0]; ix++) { | ||
| float r = ggml_tensor_get_f32(rgb_img, ix, iy); | ||
| float g = ggml_tensor_get_f32(rgb_img, ix, iy, 1); | ||
| float b = ggml_tensor_get_f32(rgb_img, ix, iy, 2); | ||
| float gray = 0.2989f * r + 0.5870f * g + 0.1140f * b; | ||
| ggml_tensor_set_f32(grayscale, gray, ix, iy); | ||
| } | ||
| } | ||
| } | ||
| void prop_hypot(struct ggml_tensor* x, struct ggml_tensor* y, struct ggml_tensor* h) { | ||
| int n_elements = ggml_nelements(h); | ||
| float* dx = (float*)x->data; | ||
| float* dy = (float*)y->data; | ||
| float* dh = (float*)h->data; | ||
| for (int i = 0; i < n_elements; i++) { | ||
| dh[i] = sqrtf(dx[i] * dx[i] + dy[i] * dy[i]); | ||
| } | ||
| } | ||
| void prop_arctan2(struct ggml_tensor* x, struct ggml_tensor* y, struct ggml_tensor* h) { | ||
| int n_elements = ggml_nelements(h); | ||
| float* dx = (float*)x->data; | ||
| float* dy = (float*)y->data; | ||
| float* dh = (float*)h->data; | ||
| for (int i = 0; i < n_elements; i++) { | ||
| dh[i] = atan2f(dy[i], dx[i]); | ||
| } | ||
| } | ||
| void normalize_tensor(struct ggml_tensor* g) { | ||
| int n_elements = ggml_nelements(g); | ||
| float* dg = (float*)g->data; | ||
| float max = -INFINITY; | ||
| for (int i = 0; i < n_elements; i++) { | ||
| max = dg[i] > max ? dg[i] : max; | ||
| } | ||
| max = 1.0f / max; | ||
| for (int i = 0; i < n_elements; i++) { | ||
| dg[i] *= max; | ||
| } | ||
| } | ||
| void non_max_supression(struct ggml_tensor* result, struct ggml_tensor* G, struct ggml_tensor* D) { | ||
| for (int iy = 1; iy < result->ne[1] - 1; iy++) { | ||
| for (int ix = 1; ix < result->ne[0] - 1; ix++) { | ||
| float angle = ggml_tensor_get_f32(D, ix, iy) * 180.0f / M_PI_; | ||
| angle = angle < 0.0f ? angle += 180.0f : angle; | ||
| float q = 1.0f; | ||
| float r = 1.0f; | ||
| // angle 0 | ||
| if ((0 >= angle && angle < 22.5f) || (157.5f >= angle && angle <= 180)) { | ||
| q = ggml_tensor_get_f32(G, ix, iy + 1); | ||
| r = ggml_tensor_get_f32(G, ix, iy - 1); | ||
| } | ||
| // angle 45 | ||
| else if (22.5f >= angle && angle < 67.5f) { | ||
| q = ggml_tensor_get_f32(G, ix + 1, iy - 1); | ||
| r = ggml_tensor_get_f32(G, ix - 1, iy + 1); | ||
| } | ||
| // angle 90 | ||
| else if (67.5f >= angle && angle < 112.5) { | ||
| q = ggml_tensor_get_f32(G, ix + 1, iy); | ||
| r = ggml_tensor_get_f32(G, ix - 1, iy); | ||
| } | ||
| // angle 135 | ||
| else if (112.5 >= angle && angle < 157.5f) { | ||
| q = ggml_tensor_get_f32(G, ix - 1, iy - 1); | ||
| r = ggml_tensor_get_f32(G, ix + 1, iy + 1); | ||
| } | ||
| float cur = ggml_tensor_get_f32(G, ix, iy); | ||
| if ((cur >= q) && (cur >= r)) { | ||
| ggml_tensor_set_f32(result, cur, ix, iy); | ||
| } else { | ||
| ggml_tensor_set_f32(result, 0.0f, ix, iy); | ||
| } | ||
| } | ||
| } | ||
| } | ||
| void threshold_hystersis(struct ggml_tensor* img, float high_threshold, float low_threshold, float weak, float strong) { | ||
| int n_elements = ggml_nelements(img); | ||
| float* imd = (float*)img->data; | ||
| float max = -INFINITY; | ||
| for (int i = 0; i < n_elements; i++) { | ||
| max = imd[i] > max ? imd[i] : max; | ||
| } | ||
| float ht = max * high_threshold; | ||
| float lt = ht * low_threshold; | ||
| for (int i = 0; i < n_elements; i++) { | ||
| float img_v = imd[i]; | ||
| if (img_v >= ht) { // strong pixel | ||
| imd[i] = strong; | ||
| } else if (img_v <= ht && img_v >= lt) { // strong pixel | ||
| imd[i] = weak; | ||
| } | ||
| } | ||
| for (int iy = 0; iy < img->ne[1]; iy++) { | ||
| for (int ix = 0; ix < img->ne[0]; ix++) { | ||
| if (ix >= 3 && ix <= img->ne[0] - 3 && iy >= 3 && iy <= img->ne[1] - 3) { | ||
| ggml_tensor_set_f32(img, ggml_tensor_get_f32(img, ix, iy), ix, iy); | ||
| } else { | ||
| ggml_tensor_set_f32(img, 0.0f, ix, iy); | ||
| } | ||
| } | ||
| } | ||
| // hysteresis | ||
| for (int iy = 1; iy < img->ne[1] - 1; iy++) { | ||
| for (int ix = 1; ix < img->ne[0] - 1; ix++) { | ||
| float imd_v = ggml_tensor_get_f32(img, ix, iy); | ||
| if (imd_v == weak) { | ||
| if (ggml_tensor_get_f32(img, ix + 1, iy - 1) == strong || ggml_tensor_get_f32(img, ix + 1, iy) == strong || | ||
| ggml_tensor_get_f32(img, ix, iy - 1) == strong || ggml_tensor_get_f32(img, ix, iy + 1) == strong || | ||
| ggml_tensor_get_f32(img, ix - 1, iy - 1) == strong || ggml_tensor_get_f32(img, ix - 1, iy) == strong) { | ||
| ggml_tensor_set_f32(img, strong, ix, iy); | ||
| } else { | ||
| ggml_tensor_set_f32(img, 0.0f, ix, iy); | ||
| } | ||
| } | ||
| } | ||
| } | ||
| } | ||
| uint8_t* preprocess_canny(uint8_t* img, int width, int height, float high_threshold, float low_threshold, float weak, float strong, bool inverse) { | ||
| struct ggml_init_params params; | ||
| params.mem_size = static_cast<size_t>(10 * 1024 * 1024); // 10 | ||
| params.mem_buffer = NULL; | ||
| params.no_alloc = false; | ||
| struct ggml_context* work_ctx = ggml_init(params); | ||
| if (!work_ctx) { | ||
| LOG_ERROR("ggml_init() failed"); | ||
| return NULL; | ||
| } | ||
| float kX[9] = { | ||
| -1, 0, 1, | ||
| -2, 0, 2, | ||
| -1, 0, 1}; | ||
| float kY[9] = { | ||
| 1, 2, 1, | ||
| 0, 0, 0, | ||
| -1, -2, -1}; | ||
| // generate kernel | ||
| int kernel_size = 5; | ||
| struct ggml_tensor* gkernel = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, kernel_size, kernel_size, 1, 1); | ||
| struct ggml_tensor* sf_kx = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 3, 3, 1, 1); | ||
| memcpy(sf_kx->data, kX, ggml_nbytes(sf_kx)); | ||
| struct ggml_tensor* sf_ky = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 3, 3, 1, 1); | ||
| memcpy(sf_ky->data, kY, ggml_nbytes(sf_ky)); | ||
| gaussian_kernel(gkernel); | ||
| struct ggml_tensor* image = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 3, 1); | ||
| struct ggml_tensor* image_gray = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 1, 1); | ||
| struct ggml_tensor* iX = ggml_dup_tensor(work_ctx, image_gray); | ||
| struct ggml_tensor* iY = ggml_dup_tensor(work_ctx, image_gray); | ||
| struct ggml_tensor* G = ggml_dup_tensor(work_ctx, image_gray); | ||
| struct ggml_tensor* tetha = ggml_dup_tensor(work_ctx, image_gray); | ||
| sd_image_to_tensor(img, image); | ||
| grayscale(image, image_gray); | ||
| convolve(image_gray, image_gray, gkernel, 2); | ||
| convolve(image_gray, iX, sf_kx, 1); | ||
| convolve(image_gray, iY, sf_ky, 1); | ||
| prop_hypot(iX, iY, G); | ||
| normalize_tensor(G); | ||
| prop_arctan2(iX, iY, tetha); | ||
| non_max_supression(image_gray, G, tetha); | ||
| threshold_hystersis(image_gray, high_threshold, low_threshold, weak, strong); | ||
| // to RGB channels | ||
| for (int iy = 0; iy < height; iy++) { | ||
| for (int ix = 0; ix < width; ix++) { | ||
| float gray = ggml_tensor_get_f32(image_gray, ix, iy); | ||
| gray = inverse ? 1.0f - gray : gray; | ||
| ggml_tensor_set_f32(image, gray, ix, iy); | ||
| ggml_tensor_set_f32(image, gray, ix, iy, 1); | ||
| ggml_tensor_set_f32(image, gray, ix, iy, 2); | ||
| } | ||
| } | ||
| free(img); | ||
| uint8_t* output = sd_tensor_to_image(image); | ||
| ggml_free(work_ctx); | ||
| return output; | ||
| } |
Oops, something went wrong.
Uh oh!
There was an error while loading.Please reload this page.
Oops, something went wrong.
Uh oh!
There was an error while loading.Please reload this page.
Add this suggestion to a batch that can be applied as a single commit.This suggestion is invalid because no changes were made to the code.Suggestions cannot be applied while the pull request is closed.Suggestions cannot be applied while viewing a subset of changes.Only one suggestion per line can be applied in a batch.Add this suggestion to a batch that can be applied as a single commit.Applying suggestions on deleted lines is not supported.You must change the existing code in this line in order to create a valid suggestion.Outdated suggestions cannot be applied.This suggestion has been applied or marked resolved.Suggestions cannot be applied from pending reviews.Suggestions cannot be applied on multi-line comments.Suggestions cannot be applied while the pull request is queued to merge.Suggestion cannot be applied right now. Please check back later.