- Notifications
You must be signed in to change notification settings - Fork223
PORORO: Platform Of neuRal mOdels for natuRal language prOcessing
License
Apache-2.0 and 2 other licenses found
Licenses found
kakaobrain/pororo
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
pororo
performs Natural Language Processing and Speech-related tasks.
It is easy to solve various subtasks in the natural language and speech processing field by simply passing the task name.
pororo
is based ontorch=1.6(cuda 10.1)
andpython>=3.6
You can install a package through the command below:
pip install pororo
- Or you can install itlocally:
git clone https://github.com/kakaobrain/pororo.gitcd pororopip install -e .
For library installation for specific tasks other than thecommon modules, please refer toINSTALL.md
For the utilization ofAutomatic Speech Recognition,wav2letter should be installed separately. For the installation, please run theasr-install.sh
bash asr-install.sh
- For the utilization ofSpeech Synthesis, please run thetts-install.sh
bash tts-install.sh
- Speech Synthesis samples can be foundhere
pororo
can be used as follows:- First, in order to import
pororo
, you must execute the following snippet
>>>frompororoimportPororo
- After the import, you can check the tasks currently supported by the
pororo
through the following commands
>>>frompororoimportPororo>>>Pororo.available_tasks()"Available tasks are ['mrc', 'rc', 'qa', 'question_answering', 'machine_reading_comprehension', 'reading_comprehension', 'sentiment', 'sentiment_analysis', 'nli', 'natural_language_inference', 'inference', 'fill', 'fill_in_blank', 'fib', 'para', 'pi', 'cse', 'contextual_subword_embedding', 'similarity', 'sts', 'semantic_textual_similarity', 'sentence_similarity', 'sentvec', 'sentence_embedding', 'sentence_vector', 'se', 'inflection', 'morphological_inflection', 'g2p', 'grapheme_to_phoneme', 'grapheme_to_phoneme_conversion', 'w2v', 'wordvec', 'word2vec', 'word_vector', 'word_embedding', 'tokenize', 'tokenise', 'tokenization', 'tokenisation', 'tok', 'segmentation', 'seg', 'mt', 'machine_translation', 'translation', 'pos', 'tag', 'pos_tagging', 'tagging', 'const', 'constituency', 'constituency_parsing', 'cp', 'pg', 'collocation', 'collocate', 'col', 'word_translation', 'wt', 'summarization', 'summarisation', 'text_summarization', 'text_summarisation', 'summary', 'gec', 'review', 'review_scoring', 'lemmatization', 'lemmatisation', 'lemma', 'ner', 'named_entity_recognition', 'entity_recognition', 'zero-topic', 'dp', 'dep_parse', 'caption', 'captioning', 'asr', 'speech_recognition', 'st', 'speech_translation', 'ocr', 'srl', 'semantic_role_labeling', 'p2g', 'aes', 'essay', 'qg', 'question_generation', 'age_suitability']"
- To check which models are supported by each task, you can go through the following process
>>>frompororoimportPororo>>>Pororo.available_models("collocation")'Available models for collocation are ([lang]: ko, [model]: kollocate), ([lang]: en, [model]: collocate.en), ([lang]: ja, [model]: collocate.ja), ([lang]: zh, [model]: collocate.zh)'
- If you want to perform a specific task, you can put the task name in the
task
argument and the language name in thelang
argument
>>>frompororoimportPororo>>>ner=Pororo(task="ner",lang="en")
- After object construction, it can be used in a way that passes the input value as follows:
>>>ner("Michael Jeffrey Jordan (born February 17, 1963) is an American businessman and former professional basketball player.")[('Michael Jeffrey Jordan','PERSON'), ('(','O'), ('born','O'), ('February 17, 1963)','DATE'), ('is','O'), ('an','O'), ('American','NORP'), ('businessman','O'), ('and','O'), ('former','O'), ('professional','O'), ('basketball','O'), ('player','O'), ('.','O')]
- If task supports multiple languages, you can change the
lang
argument to take advantage of models trained in different languages.
>>>ner=Pororo(task="ner",lang="ko")>>>ner("마이클 제프리 조던(영어: Michael Jeffrey Jordan, 1963년 2월 17일 ~ )은 미국의 은퇴한 농구 선수이다.")[('마이클 제프리 조던','PERSON'), ('(','O'), ('영어','CIVILIZATION'), (':','O'), (' ','O'), ('Michael Jeffrey Jordan','PERSON'), (',','O'), (' ','O'), ('1963년 2월 17일 ~','DATE'), (' ','O'), (')은','O'), (' ','O'), ('미국','LOCATION'), ('의','O'), (' ','O'), ('은퇴한','O'), (' ','O'), ('농구 선수','CIVILIZATION'), ('이다.','O')]>>>ner=Pororo(task="ner",lang="ja")>>>ner("マイケル・ジェフリー・ジョーダンは、アメリカ合衆国の元バスケットボール選手")[('マイケル・ジェフリー・ジョーダン','PERSON'), ('は','O'), ('、アメリカ合衆国','O'), ('の','O'), ('元','O'), ('バスケットボール','O'), ('選手','O')]>>>ner=Pororo(task="ner",lang="zh")>>>ner("麥可·傑佛瑞·喬丹是美國退役NBA職業籃球運動員,也是一名商人,現任夏洛特黃蜂董事長及主要股東")[('麥可·傑佛瑞·喬丹','PERSON'), ('是','O'), ('美國','GPE'), ('退','O'), ('役','O'), ('nba','ORG'), ('職','O'), ('業','O'), ('籃','O'), ('球','O'), ('運','O'), ('動','O'), ('員','O'), (',','O'), ('也','O'), ('是','O'), ('一','O'), ('名','O'), ('商','O'), ('人','O'), (',','O'), ('現','O'), ('任','O'), ('夏洛特黃蜂','ORG'), ('董','O'), ('事','O'), ('長','O'), ('及','O'), ('主','O'), ('要','O'), ('股','O'), ('東','O')]
- If the task supportsmultiple models, you can change the
model
argument to use another model.
>>>frompororoimportPororo>>>mt=Pororo(task="mt",lang="multi",model="transformer.large.multi.mtpg")>>>fast_mt=Pororo(task="mt",lang="multi",model="transformer.large.multi.fast.mtpg")
For more detailed information, seefull documentation
If you have any questions or requests, please reportthe issue.
If you apply this library to any project and research, please cite our code:
@misc{pororo, author = {Heo, Hoon and Ko, Hyunwoong and Kim, Soohwan and Han, Gunsoo and Park, Jiwoo and Park, Kyubyong}, title = {PORORO: Platform Of neuRal mOdels for natuRal language prOcessing}, howpublished = {\url{https://github.com/kakaobrain/pororo}}, year = {2021},}
Hoon Heo,Hyunwoong Ko,Soohwan Kim,Gunsoo Han,Jiwoo Park andKyubyong Park
PORORO
project is licensed under the terms ofthe Apache License 2.0.
Copyright 2021 Kakao Brain Corp.https://www.kakaobrain.com All Rights Reserved.
About
PORORO: Platform Of neuRal mOdels for natuRal language prOcessing
Topics
Resources
License
Apache-2.0 and 2 other licenses found
Licenses found
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Uh oh!
There was an error while loading.Please reload this page.
Contributors4
Uh oh!
There was an error while loading.Please reload this page.