Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
This repository was archived by the owner on May 27, 2022. It is now read-only.
/pororoPublic archive

PORORO: Platform Of neuRal mOdels for natuRal language prOcessing

License

Apache-2.0 and 2 other licenses found

Licenses found

Apache-2.0
LICENSE
Unknown
LICENSE.3rd_party_library
Unknown
LICENSE.3rd_party_model
NotificationsYou must be signed in to change notification settings

kakaobrain/pororo

Repository files navigation

GitHub releaseApache 2.0DocsIssues


pororo performs Natural Language Processing and Speech-related tasks.

It is easy to solve various subtasks in the natural language and speech processing field by simply passing the task name.


Installation

  • pororo is based ontorch=1.6(cuda 10.1) andpython>=3.6

  • You can install a package through the command below:

pip install pororo
  • Or you can install itlocally:
git clone https://github.com/kakaobrain/pororo.gitcd pororopip install -e .
  • For library installation for specific tasks other than thecommon modules, please refer toINSTALL.md

  • For the utilization ofAutomatic Speech Recognition,wav2letter should be installed separately. For the installation, please run theasr-install.sh

bash asr-install.sh
bash tts-install.sh
  • Speech Synthesis samples can be foundhere

Usage

  • pororo can be used as follows:
  • First, in order to importpororo, you must execute the following snippet
>>>frompororoimportPororo
  • After the import, you can check the tasks currently supported by thepororo through the following commands
>>>frompororoimportPororo>>>Pororo.available_tasks()"Available tasks are ['mrc', 'rc', 'qa', 'question_answering', 'machine_reading_comprehension', 'reading_comprehension', 'sentiment', 'sentiment_analysis', 'nli', 'natural_language_inference', 'inference', 'fill', 'fill_in_blank', 'fib', 'para', 'pi', 'cse', 'contextual_subword_embedding', 'similarity', 'sts', 'semantic_textual_similarity', 'sentence_similarity', 'sentvec', 'sentence_embedding', 'sentence_vector', 'se', 'inflection', 'morphological_inflection', 'g2p', 'grapheme_to_phoneme', 'grapheme_to_phoneme_conversion', 'w2v', 'wordvec', 'word2vec', 'word_vector', 'word_embedding', 'tokenize', 'tokenise', 'tokenization', 'tokenisation', 'tok', 'segmentation', 'seg', 'mt', 'machine_translation', 'translation', 'pos', 'tag', 'pos_tagging', 'tagging', 'const', 'constituency', 'constituency_parsing', 'cp', 'pg', 'collocation', 'collocate', 'col', 'word_translation', 'wt', 'summarization', 'summarisation', 'text_summarization', 'text_summarisation', 'summary', 'gec', 'review', 'review_scoring', 'lemmatization', 'lemmatisation', 'lemma', 'ner', 'named_entity_recognition', 'entity_recognition', 'zero-topic', 'dp', 'dep_parse', 'caption', 'captioning', 'asr', 'speech_recognition', 'st', 'speech_translation', 'ocr', 'srl', 'semantic_role_labeling', 'p2g', 'aes', 'essay', 'qg', 'question_generation', 'age_suitability']"
  • To check which models are supported by each task, you can go through the following process
>>>frompororoimportPororo>>>Pororo.available_models("collocation")'Available models for collocation are ([lang]: ko, [model]: kollocate), ([lang]: en, [model]: collocate.en), ([lang]: ja, [model]: collocate.ja), ([lang]: zh, [model]: collocate.zh)'
  • If you want to perform a specific task, you can put the task name in thetask argument and the language name in thelang argument
>>>frompororoimportPororo>>>ner=Pororo(task="ner",lang="en")
  • After object construction, it can be used in a way that passes the input value as follows:
>>>ner("Michael Jeffrey Jordan (born February 17, 1963) is an American businessman and former professional basketball player.")[('Michael Jeffrey Jordan','PERSON'), ('(','O'), ('born','O'), ('February 17, 1963)','DATE'), ('is','O'), ('an','O'), ('American','NORP'), ('businessman','O'), ('and','O'), ('former','O'), ('professional','O'), ('basketball','O'), ('player','O'), ('.','O')]
  • If task supports multiple languages, you can change thelang argument to take advantage of models trained in different languages.
>>>ner=Pororo(task="ner",lang="ko")>>>ner("마이클 제프리 조던(영어: Michael Jeffrey Jordan, 1963년 2월 17일 ~ )은 미국의 은퇴한 농구 선수이다.")[('마이클 제프리 조던','PERSON'), ('(','O'), ('영어','CIVILIZATION'), (':','O'), (' ','O'), ('Michael Jeffrey Jordan','PERSON'), (',','O'), (' ','O'), ('1963년 2월 17일 ~','DATE'), (' ','O'), (')은','O'), (' ','O'), ('미국','LOCATION'), ('의','O'), (' ','O'), ('은퇴한','O'), (' ','O'), ('농구 선수','CIVILIZATION'), ('이다.','O')]>>>ner=Pororo(task="ner",lang="ja")>>>ner("マイケル・ジェフリー・ジョーダンは、アメリカ合衆国の元バスケットボール選手")[('マイケル・ジェフリー・ジョーダン','PERSON'), ('は','O'), ('、アメリカ合衆国','O'), ('の','O'), ('元','O'), ('バスケットボール','O'), ('選手','O')]>>>ner=Pororo(task="ner",lang="zh")>>>ner("麥可·傑佛瑞·喬丹是美國退役NBA職業籃球運動員,也是一名商人,現任夏洛特黃蜂董事長及主要股東")[('麥可·傑佛瑞·喬丹','PERSON'), ('是','O'), ('美國','GPE'), ('退','O'), ('役','O'), ('nba','ORG'), ('職','O'), ('業','O'), ('籃','O'), ('球','O'), ('運','O'), ('動','O'), ('員','O'), (',','O'), ('也','O'), ('是','O'), ('一','O'), ('名','O'), ('商','O'), ('人','O'), (',','O'), ('現','O'), ('任','O'), ('夏洛特黃蜂','ORG'), ('董','O'), ('事','O'), ('長','O'), ('及','O'), ('主','O'), ('要','O'), ('股','O'), ('東','O')]
  • If the task supportsmultiple models, you can change themodel argument to use another model.
>>>frompororoimportPororo>>>mt=Pororo(task="mt",lang="multi",model="transformer.large.multi.mtpg")>>>fast_mt=Pororo(task="mt",lang="multi",model="transformer.large.multi.fast.mtpg")

Documentation

For more detailed information, seefull documentation

If you have any questions or requests, please reportthe issue.


Citation

If you apply this library to any project and research, please cite our code:

@misc{pororo,  author       = {Heo, Hoon and Ko, Hyunwoong and Kim, Soohwan and                  Han, Gunsoo and Park, Jiwoo and Park, Kyubyong},  title        = {PORORO: Platform Of neuRal mOdels for natuRal language prOcessing},  howpublished = {\url{https://github.com/kakaobrain/pororo}},  year         = {2021},}

Contributors

Hoon Heo,Hyunwoong Ko,Soohwan Kim,Gunsoo Han,Jiwoo Park andKyubyong Park


License

PORORO project is licensed under the terms ofthe Apache License 2.0.

Copyright 2021 Kakao Brain Corp.https://www.kakaobrain.com All Rights Reserved.


[8]ページ先頭

©2009-2025 Movatter.jp