- Notifications
You must be signed in to change notification settings - Fork3
Analyzing Hi-C data in R with HiCExperiment objects
License
Unknown, MIT licenses found
Licenses found
js2264/HiContacts
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
Please cite:
Serizay J, Matthey-Doret C, Bignaud A, Baudry L, Koszul R (2024). “Orchestrating chromosome conformation capture analysis with Bioconductor.”Nature Communications,15, 1-9.doi:10.1038/s41467-024-44761-x.
HiContacts provides tools to investigate(m)cool matrices imported in R byHiCExperiment.
It leverages theHiCExperiment class of objects, built on pre-existing Bioconductor objects, namelyInteractionSet,GInterations andContactMatrix (Lun, Perry & Ing-Simmons, F1000Research 2016), and providesanalytical andvisualization tools to investigate contact maps.
HiContacts is available in Bioconductor. To install the current release, use:
if (!requireNamespace("BiocManager",quietly=TRUE)) install.packages("BiocManager")BiocManager::install("HiContacts")
To install the most recent version ofHiContacts, you can use:
install.packages("devtools")devtools::install_github("js2264/HiContacts")library(HiContacts)
If you are usingHiContacts in your research, please cite:
Serizay J (2022).HiContacts: HiContacts: R interface to cool files.R package version 1.1.0https://github.com/js2264/HiContacts.
HiContacts includes a introduction vignette where its usage isillustrated. To access the vignette, please use:
vignette('HiContacts')mcool_file<-HiContactsData::HiContactsData('yeast_wt',format='mcool')range<-'I:20000-80000'# range of interestavailableResolutions(mcool_file)hic<-HiCExperiment::import(mcool_file,format='mcool',focus=range,resolution=1000)hic
plotMatrix(hic,use.scores='count')plotMatrix(hic,use.scores='balanced',limits= c(-4,-1))plotMatrix(hic,use.scores='balanced',limits= c(-4,-1),maxDistance=100000)
library(rtracklayer)mcool_file<-HiContactsData::HiContactsData('yeast_wt',format='mcool')hic<- import(mcool_file,format='mcool',focus='IV')loops<- system.file("extdata",'S288C-loops.bedpe',package='HiContacts')|> import()|>InteractionSet::makeGInteractionsFromGRangesPairs()borders<- system.file("extdata",'S288C-borders.bed',package='HiContacts')|> import()p<- plotMatrix(hic,loops=loops,borders=borders,limits= c(-4,-1),dpi=120)
contacts<- contacts_yeast()contacts<- zoom(contacts,resolution=2000)aggr_centros<- aggregate(contacts,targets= topologicalFeatures(contacts,'centromeres'))plotMatrix(aggr_centros,use.scores='detrended',limits= c(-1,1),scale='linear')
microC_mcool<-fourDNData::fourDNData('4DNES14CNC1I','mcool')hic<- import(microC_mcool,format='mcool',resolution=10000000)genome<-BSgenome.Mmusculus.UCSC.mm10::BSgenome.Mmusculus.UCSC.mm10# - Get compartmentshic<- getCompartments(hic,resolution=100000,genome=genome,chromosomes= c('chr17','chr19'))# - Export compartments as bigwig and bed filesexport(IRanges::coverage(metadata(hic)$eigens,weight='eigen'),'microC_compartments.bw')export( topologicalFeatures(hic,'compartments')[topologicalFeatures(hic,'compartments')$compartment=='A'],'microC_A-compartments.bed')export( topologicalFeatures(hic,'compartments')[topologicalFeatures(hic,'compartments')$compartment=='B'],'microC_B-compartments.bed')# - Generate saddle plotplotSaddle(hic)
# - Compute insulation scorehic<- refocus(hic,'chr19:1-30000000')|> zoom(resolution=10000)|> getDiamondInsulation(window_size=100000)|> getBorders()# - Export insulation as bigwig track and borders as bed fileexport(IRanges::coverage(metadata(hic)$insulation,weight='insulation'),'microC_insulation.bw')export(topologicalFeatures(hic,'borders'),'microC_borders.bed')
hic<- import(CoolFile(mcool_file,pairs=HiContactsData::HiContactsData('yeast_wt',format='pairs.gz')))ps<- distanceLaw(hic)plotPs(ps,ggplot2::aes(x=binned_distance,y=norm_p))
hic<- import(CoolFile(mcool_file))v4C<- virtual4C(hic,viewpoint= GRanges('V:150000-170000'))plot4C(v4C)
hic<- import(CoolFile(mcool_file))cisTransRatio(hic)
HiCool is integrated within theHiCExperiment ecosystem in Bioconductor.Read more about theHiCExperiment class and handling Hi-C data in Rhere.
- HiCExperiment: Parsing Hi-C files in R
- HiCool: End-to-end integrated workflow to process fastq files into .cool and .pairs files
- HiContacts: Investigating Hi-C results in R
- HiContactsData: Data companion package
- fourDNData: Gateway package to 4DN-hosted Hi-C experiments
About
Analyzing Hi-C data in R with HiCExperiment objects
Resources
License
Unknown, MIT licenses found
Licenses found
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
Packages0
Uh oh!
There was an error while loading.Please reload this page.
Contributors3
Uh oh!
There was an error while loading.Please reload this page.
