Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Analyzing Hi-C data in R with HiCExperiment objects

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
NotificationsYou must be signed in to change notification settings

js2264/HiContacts

Repository files navigation

DOIrworkflowsDocumentationOHCA bookStatic BadgeBioc build (release)Bioc build (devel)

HiContacts

👉 OHCA book 📖

Please cite:

Serizay J, Matthey-Doret C, Bignaud A, Baudry L, Koszul R (2024). “Orchestrating chromosome conformation capture analysis with Bioconductor.”Nature Communications,15, 1-9.doi:10.1038/s41467-024-44761-x.

DOI


HiContacts provides tools to investigate(m)cool matrices imported in R byHiCExperiment.

It leverages theHiCExperiment class of objects, built on pre-existing Bioconductor objects, namelyInteractionSet,GInterations andContactMatrix (Lun, Perry & Ing-Simmons, F1000Research 2016), and providesanalytical andvisualization tools to investigate contact maps.

Installation

HiContacts is available in Bioconductor. To install the current release, use:

if (!requireNamespace("BiocManager",quietly=TRUE))    install.packages("BiocManager")BiocManager::install("HiContacts")

To install the most recent version ofHiContacts, you can use:

install.packages("devtools")devtools::install_github("js2264/HiContacts")library(HiContacts)

Citation

If you are usingHiContacts in your research, please cite:

Serizay J (2022).HiContacts: HiContacts: R interface to cool files.R package version 1.1.0https://github.com/js2264/HiContacts.

How to useHiContacts

HiContacts includes a introduction vignette where its usage isillustrated. To access the vignette, please use:

vignette('HiContacts')

Visualising Hi-C contact maps and features

Importing a Hi-C contact maps file withHiCExperiment

mcool_file<-HiContactsData::HiContactsData('yeast_wt',format='mcool')range<-'I:20000-80000'# range of interestavailableResolutions(mcool_file)hic<-HiCExperiment::import(mcool_file,format='mcool',focus=range,resolution=1000)hic

Plotting matrices (square or horizontal)

plotMatrix(hic,use.scores='count')plotMatrix(hic,use.scores='balanced',limits= c(-4,-1))plotMatrix(hic,use.scores='balanced',limits= c(-4,-1),maxDistance=100000)

Plotting matrices with topological features

library(rtracklayer)mcool_file<-HiContactsData::HiContactsData('yeast_wt',format='mcool')hic<- import(mcool_file,format='mcool',focus='IV')loops<- system.file("extdata",'S288C-loops.bedpe',package='HiContacts')|>     import()|>InteractionSet::makeGInteractionsFromGRangesPairs()borders<- system.file("extdata",'S288C-borders.bed',package='HiContacts')|>     import()p<- plotMatrix(hic,loops=loops,borders=borders,limits= c(-4,-1),dpi=120)

Plotting aggregated matrices (a.k.a. APA plots)

contacts<- contacts_yeast()contacts<- zoom(contacts,resolution=2000)aggr_centros<- aggregate(contacts,targets= topologicalFeatures(contacts,'centromeres'))plotMatrix(aggr_centros,use.scores='detrended',limits= c(-1,1),scale='linear')

Mapping topological features

Chromosome compartments

microC_mcool<-fourDNData::fourDNData('4DNES14CNC1I','mcool')hic<- import(microC_mcool,format='mcool',resolution=10000000)genome<-BSgenome.Mmusculus.UCSC.mm10::BSgenome.Mmusculus.UCSC.mm10# - Get compartmentshic<- getCompartments(hic,resolution=100000,genome=genome,chromosomes= c('chr17','chr19'))# - Export compartments as bigwig and bed filesexport(IRanges::coverage(metadata(hic)$eigens,weight='eigen'),'microC_compartments.bw')export(    topologicalFeatures(hic,'compartments')[topologicalFeatures(hic,'compartments')$compartment=='A'],'microC_A-compartments.bed')export(    topologicalFeatures(hic,'compartments')[topologicalFeatures(hic,'compartments')$compartment=='B'],'microC_B-compartments.bed')# - Generate saddle plotplotSaddle(hic)

Diamond insulation score and chromatin domains borders

# - Compute insulation scorehic<- refocus(hic,'chr19:1-30000000')|>     zoom(resolution=10000)|>     getDiamondInsulation(window_size=100000)|>     getBorders()# - Export insulation as bigwig track and borders as bed fileexport(IRanges::coverage(metadata(hic)$insulation,weight='insulation'),'microC_insulation.bw')export(topologicalFeatures(hic,'borders'),'microC_borders.bed')

In-depth analysis ofHiCExperiment objects

Arithmetics

Detrend

Autocorrelate

Divide

Merge

Distance law, a.k.a. P(s)

hic<- import(CoolFile(mcool_file,pairs=HiContactsData::HiContactsData('yeast_wt',format='pairs.gz')))ps<- distanceLaw(hic)plotPs(ps,ggplot2::aes(x=binned_distance,y=norm_p))

Virtual 4C

hic<- import(CoolFile(mcool_file))v4C<- virtual4C(hic,viewpoint= GRanges('V:150000-170000'))plot4C(v4C)

Cis-trans ratios

hic<- import(CoolFile(mcool_file))cisTransRatio(hic)

Scalograms

HiCExperiment ecosystem

HiCool is integrated within theHiCExperiment ecosystem in Bioconductor.Read more about theHiCExperiment class and handling Hi-C data in Rhere.

  • HiCExperiment: Parsing Hi-C files in R
  • HiCool: End-to-end integrated workflow to process fastq files into .cool and .pairs files
  • HiContacts: Investigating Hi-C results in R
  • HiContactsData: Data companion package
  • fourDNData: Gateway package to 4DN-hosted Hi-C experiments

About

Analyzing Hi-C data in R with HiCExperiment objects

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors3

  •  
  •  
  •  

Languages


[8]ページ先頭

©2009-2025 Movatter.jp