Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

Noise2Noise implementation

NotificationsYou must be signed in to change notification settings

johnPertoft/noise2noise

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TensorflowNoise2Noise implementation.

Noise2Noise is a machine learning algorithm that can learn signal reconstruction from onlynoisy examples, i.e. both inputs and targets are noisy realisations of the same image.

Prerequisites

  • Tfrecord files with jpeg encoded images under keyimage/encoded for training and evaluation.

Docker

(requiresnvidia-docker)

Build docker image

$ docker build -t n2n.

Run a command inside docker container

$ ./scripts/run-in-docker<command>

Mount extra volumes for input or output reasons. Current directory is already shared.

$ VOLUMES="/vol1:/vol1 /vol2:/vol2" ./scripts/run-in-docker<command>

Help

$ python -m n2n.train --helpfull

Results

Images from left to right are input image, denoised image, and ground truth noise free image.

Additive gaussian noise

$ python -m n2n.train<required-args> --noise additive_gaussian --loss l2

additive-gaussian-noise

additive-gaussian-noiseadditive-gaussian-noise

Experiment with additional adversarial loss

TODO: Compare on similar images.

$ python -m n2n.train<required-args> --noise additive_gaussian --loss l2 --adv_loss lsgan

additive-gaussian-noise-adv

Text overlay noise

$ python -m n2n.train<required-args> --noise text --loss l1

text-noise

text-noisetext-noise

Impulse noise

$ python -m n2n.train<required-args> --noise impulse --loss l0

Bernoulli noise

TODO

Poisson noise

TODO

TODO

  • Raytracing/raycasting noise?

About

Noise2Noise implementation

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

[8]ページ先頭

©2009-2025 Movatter.jp