- Notifications
You must be signed in to change notification settings - Fork1
johnPertoft/noise2noise
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
TensorflowNoise2Noise implementation.
Noise2Noise is a machine learning algorithm that can learn signal reconstruction from onlynoisy examples, i.e. both inputs and targets are noisy realisations of the same image.
- Tfrecord files with jpeg encoded images under key
image/encoded
for training and evaluation.
(requiresnvidia-docker)
Build docker image
$ docker build -t n2n.
Run a command inside docker container
$ ./scripts/run-in-docker<command>
Mount extra volumes for input or output reasons. Current directory is already shared.
$ VOLUMES="/vol1:/vol1 /vol2:/vol2" ./scripts/run-in-docker<command>
$ python -m n2n.train --helpfull
Images from left to right are input image, denoised image, and ground truth noise free image.
$ python -m n2n.train<required-args> --noise additive_gaussian --loss l2
TODO: Compare on similar images.
$ python -m n2n.train<required-args> --noise additive_gaussian --loss l2 --adv_loss lsgan
$ python -m n2n.train<required-args> --noise text --loss l1
$ python -m n2n.train<required-args> --noise impulse --loss l0
TODO
TODO
- Raytracing/raycasting noise?