- Notifications
You must be signed in to change notification settings - Fork14
jkrijthe/RSSL
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
This R package provides implementations of several semi-supervisedlearning methods, in particular, our own work involving constraint basedsemi-supervised learning.
To cite the package, use either of these two references:
- Krijthe, J. H. (2016). RSSL: R package for Semi-supervised Learning.In B. Kerautret, M. Colom, & P. Monasse (Eds.), Reproducible Researchin Pattern Recognition. RRPR 2016. Lecture Notes in Computer Science,vol 10214. (pp. 104–115). Springer International Publishing.https://doi.org/10.1007/978-3-319-56414-2_8. arxiv:https://arxiv.org/abs/1612.07993
- Krijthe, J.H. & Loog, M. (2015). Implicitly ConstrainedSemi-Supervised Least Squares Classification. In E. Fromont, T. deBie, & M. van Leeuwen, eds. 14th International Symposium on Advancesin Intelligent Data Analysis XIV (Lecture Notes in Computer ScienceVolume 9385). Saint Etienne. France, pp. 158-169.
This package available on CRAN. The easiest way to install the packageis to use:
install.packages("RSSL")To install the latest version of the package using the devtools package:
library(devtools)install_github("jkrijthe/RSSL")
After installation, load the package as usual:
library(RSSL)The following code generates a simple dataset, trains a supervised andtwo semi-supervised classifiers and evaluates their performance:
library(dplyr,warn.conflicts=FALSE)library(ggplot2,warn.conflicts=FALSE)set.seed(2)df<- generate2ClassGaussian(200,d=2,var=0.2,expected=TRUE)# Randomly remove labelsdf<-df %>% add_missinglabels_mar(Class~.,prob=0.98)# Train classifierg_nm<- NearestMeanClassifier(Class~.,df,prior=matrix(0.5,2))g_self<- SelfLearning(Class~.,df,method=NearestMeanClassifier,prior=matrix(0.5,2))# Plot datasetdf %>% ggplot(aes(x=X1,y=X2,color=Class,size=Class))+ geom_point()+ coord_equal()+ scale_size_manual(values=c("-1"=3,"1"=3),na.value=1)+ geom_linearclassifier("Supervised"=g_nm,"Semi-supervised"=g_self)
# Evaluate performance: Squared Loss & Error Ratemean(loss(g_nm,df))mean(loss(g_self,df))mean(predict(g_nm,df)!=df$Class)mean(predict(g_self,df)!=df$Class)
Work on this package was supported by Project 23 of the Dutch nationalprogram COMMIT.
About
A Semi-Supervised Learning package for the R programming language
Resources
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Packages0
Uh oh!
There was an error while loading.Please reload this page.
Contributors2
Uh oh!
There was an error while loading.Please reload this page.
