- Notifications
You must be signed in to change notification settings - Fork8
Learning Descriptor Networks for 3D Shape Synthesis and Analysis
License
jianwen-xie/3DDescriptorNet
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
This repository contains a tensorflow implementation for the paper "Learning Descriptor Networks for 3D Shape Synthesis and Analysis". (http://www.stat.ucla.edu/~jxie/3DDescriptorNet/3DDescriptorNet.html)
- Python 2.7 or Python 3.3+
- Tensorflow r1.3+
- Install required Python libraries
pip install numpy scipy
Clone this repo:
git clone https://github.com/jianwen-xie/3DDescriptorNet.gitcd 3DDescriptorNet
Downloadvolumetric data and save it to
./data
directory.The dataset contains 10 categories of voxelizations ofModelNet10.Downloadpretrained models and save it to the cloned directory.
Train the synthesis model onnight stand category:
python train.py --category night_stand --data_dir ./data/volumetric_data/ModelNet10 --output_dir ./output
Visualize the generated results using theMATLAB code in
visualization/visualize.m
, e.g.addpath('visualization')visualize('./output/night_stand/synthesis','sample2990.mat')
Evaluate synthesized results using the evaluation code in
./evaluation
You can download oursynthesized results and test on it.
Train the recovery model onsofa category:
python rec_exp.py --category sofa \ --num_epochs 1000 \ --batch_size 50 \ --step_size 0.07 \ --sample_steps 90
Test the recovery model:
- Download theincomplete data and save it to
./data
directory. For each category involumetric_data
, theincomplete data contains: 1)incomplete_test.mat
: 70% randomly corrupted testing data 2)masks.mat
: The mask to corrupt the testing data. 3.original_test.mat
: original testing data for comparison. - You can download ourpretrained model to test recovery.
- Run recovery on the corrupted data
python rec_exp.py --test --category sofa \ --ckpt pretrained_model/recovery/sofa/sofa.ckpt \ --incomp_data_path ./data/incomplete_data \ --batch_size 50 \ --step_size 0.07 \ --sample_steps 90
- Download theincomplete data and save it to
Train the super resolution model ontoilet category:
python sr_exp.py --category toilet \ --cube_len 64 \ --scale 4 \ --num_epochs 500 \ --batch_size 50 \ --step_size 0.01 \ --sample_steps 10
Test the super resolution model:
python rec_exp.py --test --category toilet \ --ckpt ./output/toilet/checkpoints/model.ckpt-490 \ --cube_len 64 \ --scale 4 \ --batch_size 50 \ --step_size 0.01 \ --sample_steps 10
Method | Classification |
---|---|
Geometry Image | 88.4% |
PANORAMA-NN | 91.1% |
ECC | 90.0% |
3D ShapeNets | 83.5% |
DeepPana | 85.5% |
SPH | 79.8% |
VConv-DAE | 80.5% |
3D-GAN | 91.0% |
3D DescriptorNet (ours) | 92.4% |
Train Classification using Logistic Regression (pretrained model):
python train_classification.py --classifier_type logistic --ckpt pretrained_models/classification/model.ckpt
Train Classification using SVM:
python train_classification.py --classifier_type svm --ckpt pretrained_models/classification/model.ckpt
@inproceedings{3DDesNet, title={Learning Descriptor Networks for 3D Shape Synthesis and Analysis}, author={Xie, Jianwen and Zheng, Zilong and Gao, Ruiqi and Wang, Wenguan and Zhu Song-Chun and Wu, Ying Nian}, booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2018}}
For any questions, please contact Jianwen Xie (jianwen@ucla.edu) and Zilong Zheng (zilongzheng0318@ucla.edu).
About
Learning Descriptor Networks for 3D Shape Synthesis and Analysis
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
Packages0
Uh oh!
There was an error while loading.Please reload this page.
Contributors2
Uh oh!
There was an error while loading.Please reload this page.