Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Learning Descriptor Networks for 3D Shape Synthesis and Analysis

License

NotificationsYou must be signed in to change notification settings

jianwen-xie/3DDescriptorNet

Repository files navigation

This repository contains a tensorflow implementation for the paper "Learning Descriptor Networks for 3D Shape Synthesis and Analysis". (http://www.stat.ucla.edu/~jxie/3DDescriptorNet/3DDescriptorNet.html)

Requirements

  • Python 2.7 or Python 3.3+
  • Tensorflow r1.3+
  • Install required Python libraries
    pip install numpy scipy

Getting Started

  • Clone this repo:

    git clone https://github.com/jianwen-xie/3DDescriptorNet.gitcd 3DDescriptorNet
  • Downloadvolumetric data and save it to./data directory.The dataset contains 10 categories of voxelizations ofModelNet10.

  • Downloadpretrained models and save it to the cloned directory.

Exp1: 3D object synthesis

  • Train the synthesis model onnight stand category:

    python train.py --category night_stand --data_dir ./data/volumetric_data/ModelNet10 --output_dir ./output
  • Visualize the generated results using theMATLAB code invisualization/visualize.m, e.g.

    addpath('visualization')visualize('./output/night_stand/synthesis','sample2990.mat')
  • Evaluate synthesized results using the evaluation code in./evaluation

  • You can download oursynthesized results and test on it.

Exp2: 3D object recovery

  • Train the recovery model onsofa category:

    python rec_exp.py --category sofa \                  --num_epochs 1000 \                  --batch_size 50 \                  --step_size 0.07 \                  --sample_steps 90
  • Test the recovery model:

    1. Download theincomplete data and save it to./data directory. For each category involumetric_data, theincomplete data contains: 1)incomplete_test.mat: 70% randomly corrupted testing data 2)masks.mat: The mask to corrupt the testing data. 3.original_test.mat: original testing data for comparison.
    2. You can download ourpretrained model to test recovery.
    3. Run recovery on the corrupted data
    python rec_exp.py --test --category sofa \                  --ckpt pretrained_model/recovery/sofa/sofa.ckpt \                  --incomp_data_path ./data/incomplete_data \                  --batch_size 50 \                  --step_size 0.07 \                  --sample_steps 90

Exp3: 3D object super resolution

  • Train the super resolution model ontoilet category:

    python sr_exp.py --category toilet \                  --cube_len 64 \                  --scale 4 \                  --num_epochs 500 \                  --batch_size 50 \                  --step_size 0.01 \                  --sample_steps 10
  • Test the super resolution model:

    python rec_exp.py --test --category toilet \                  --ckpt ./output/toilet/checkpoints/model.ckpt-490 \                  --cube_len 64 \                  --scale 4 \                  --batch_size 50 \                  --step_size 0.01 \                  --sample_steps 10

Exp4: 3D object classification

MethodClassification
Geometry Image88.4%
PANORAMA-NN91.1%
ECC90.0%
3D ShapeNets83.5%
DeepPana85.5%
SPH79.8%
VConv-DAE80.5%
3D-GAN91.0%
3D DescriptorNet (ours)92.4%
  • Train Classification using Logistic Regression (pretrained model):

    python train_classification.py --classifier_type logistic --ckpt pretrained_models/classification/model.ckpt
  • Train Classification using SVM:

    python train_classification.py --classifier_type svm --ckpt pretrained_models/classification/model.ckpt

References

@inproceedings{3DDesNet,    title={Learning Descriptor Networks for 3D Shape Synthesis and Analysis},    author={Xie, Jianwen and Zheng, Zilong and Gao, Ruiqi and Wang, Wenguan and Zhu Song-Chun and Wu, Ying Nian},    booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},    year={2018}}

For any questions, please contact Jianwen Xie (jianwen@ucla.edu) and Zilong Zheng (zilongzheng0318@ucla.edu).

About

Learning Descriptor Networks for 3D Shape Synthesis and Analysis

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors2

  •  
  •  

[8]ページ先頭

©2009-2025 Movatter.jp