Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

A lavaan-like syntax for structural equation models with OpenMx

License

NotificationsYou must be signed in to change notification settings

jhorzek/mxsem

Repository files navigation

Total DownloadsR-CMD-check

mxsem provides alavaan-like (Rosseel, 2012) syntax to implementstructural equation models (SEM) withOpenMx (Boker et al., 2011).The objective is to simplify fitting basic SEM withOpenMx, whilealso unlocking some very useful advanced features. For instance,mxsem allows for parameter transformations and definition variables.However,mxsem is intentionally incomplete in order to focus onsimplicity. The main function (mxsem()) is similar tolavaan’ssem()-function in that it tries to set up parts of the modelautomatically (e.g., adding variances automatically or scaling thelatent variables automatically).

Warning: The syntax and settings ofmxsem may differ fromlavaan in some cases. Seevignette("Syntax", package = "mxsem")for more details on the syntax and the default arguments.

Alternatives

mxsem is not the first package providing alavaan-like syntaxforOpenMx. You will find similar functions in the followingpackages:

  • metaSEM (Cheung, 2015)provides alavaan2RAM function that can be combined with thecreate.mxModel function. This combination offers more features thanmxsem. For instance, constraints of the forma < b aresupported. Inmxsem such constraints require algebras (e.g.,!diff; a := b - exp(diff)).
  • umx (Bates et al., 2019) providestheumxRAM andumxLav2RAM functions that can parse singlelavaan-style statements (e.g.,eta =~ y1 + y2 + y3) or an entirelavaan models toOpenMx models.
  • tidySEM (van Lissa, 2023)provides theas_ram function to translatelavaan syntax toOpenMx and also implements a unified syntax to specify both,lavaan andOpenMx models. Additionally, it works well with thetidyverse.
  • ezMx (Bates, et al. 2014)simplifies fitting SEM withOpenMx and also provides a translationoflavaan models toOpenMx with thelavaan.to.OpenMxfunction.

Becausemxsem implements the syntax parser from scratch, it canextend thelavaan syntax to account for specificOpenMxfeatures. This enablesimplicit transformations withcurly braces.

Citation

CiteOpenMx (Boker et al., 2011) for the modeling andlavaan forthe syntax (Rosseel, 2012). To citemxsem, checkcitation("mxsem").

Installation

mxsem is available from CRAN:

install.packages("mxsem")

The newest version of the package can be installed from GitHub using thefollowing commands in R:

if(!require(devtools)) install.packages("devtools")devtools::install_github("jhorzek/mxsem",ref="main")

Becausemxsem uses Rcpp, you will need a compiler for C++ (e.g., byinstalling Rtools on Windows, Xcode on Mac and build-essential onlinux).

Example

The following example is directly adapted fromlavaan:

library(mxsem)model<-'  # latent variable definitions     ind60 =~ x1 + x2 + x3     dem60 =~ y1 + a1*y2 + b*y3 + c1*y4     dem65 =~ y5 + a2*y6 + b*y7 + c2*y8  # regressions    dem60 ~ ind60    dem65 ~ ind60 + dem60  # residual correlations    y1 ~~ y5    y2 ~~ y4 + y6    y3 ~~ y7    y4 ~~ y8    y6 ~~ y8'mxsem(model=model,data=OpenMx::Bollen)|>  mxTryHard()|>  summary()
Show summary
#> Summary of untitled2 #>  #> free parameters:#>           name matrix   row   col      Estimate   Std.Error A lbound ubound#> 1     ind60→x2      A    x2 ind60  2.012660e+00  0.38891027                #> 2     ind60→x3      A    x3 ind60  1.650326e+00  0.36081541                #> 3  ind60→dem60      A dem60 ind60  4.091644e+00  0.82825703                #> 4  ind60→dem65      A dem65 ind60  4.476238e+01 33.03590013                #> 5           a1      A    y2 dem60  1.296343e+00  0.22069102                #> 6            b      A    y3 dem60  1.187559e+00  0.13597913                #> 7           c1      A    y4 dem60  1.413415e+00  0.18183251                #> 8  dem60→dem65      A dem65 dem60 -9.854813e+00  5.74179618                #> 9           a2      A    y6 dem65  1.121844e+00  0.16042018                #> 10          c2      A    y8 dem65  1.224479e+00  0.14984899                #> 11       y1↔y1      S    y1    y1  2.686888e+00  0.59075793    1e-06       #> 12       y2↔y2      S    y2    y2  8.576610e+00  1.48229765    1e-06       #> 13       y3↔y3      S    y3    y3  5.847195e+00  1.09096957    1e-06       #> 14       y2↔y4      S    y2    y4  1.987018e+00  0.78013870                #> 15       y4↔y4      S    y4    y4  3.387325e+00  0.74388310    1e-06       #> 16       y2↔y6      S    y2    y6  2.385179e+00  0.76306049                #> 17       y6↔y6      S    y6    y6  5.129115e+00  0.91213692    1e-06       #> 18       x1↔x1      S    x1    x1  3.013521e-01  0.06239685    1e-06       #> 19       x2↔x2      S    x2    x2  1.325533e+00  0.27206604    1e-06       #> 20       x3↔x3      S    x3    x3  1.326978e+00  0.25275042    1e-06       #> 21       y1↔y5      S    y1    y5  7.307489e-01  0.40428182                #> 22       y5↔y5      S    y5    y5  2.262309e+00  0.47568663    1e-06       #> 23       y3↔y7      S    y3    y7  1.315088e+00  0.74793582                #> 24       y7↔y7      S    y7    y7  3.819416e+00  0.79913029    1e-06       #> 25       y4↔y8      S    y4    y8  3.442654e-01  0.46177893                #> 26       y6↔y8      S    y6    y8  1.438664e+00  0.60291913                #> 27       y8↔y8      S    y8    y8  3.402689e+00  0.72529659    1e-06       #> 28 ind60↔ind60      S ind60 ind60  2.286328e-01  0.08085603    1e-06       #> 29 dem60↔dem60      S dem60 dem60  1.000001e-06          NA !     0!       #> 30 dem65↔dem65      S dem65 dem65  1.334856e-01  0.24827033    1e-06       #> 31      one→y1      M     1    y1  5.464667e+00  0.29473841                #> 32      one→y2      M     1    y2  4.256443e+00  0.44738225                #> 33      one→y3      M     1    y3  6.563110e+00  0.38723974                #> 34      one→y4      M     1    y4  4.452533e+00  0.38359678                #> 35      one→y6      M     1    y6  2.978074e+00  0.38247416                #> 36      one→x1      M     1    x1  5.054383e+00  0.08406584                #> 37      one→x2      M     1    x2  4.792195e+00  0.17327643                #> 38      one→x3      M     1    x3  3.557690e+00  0.16123756                #> 39      one→y5      M     1    y5  5.136252e+00  0.30340241                #> 40      one→y7      M     1    y7  6.196264e+00  0.37176597                #> 41      one→y8      M     1    y8  4.043390e+00  0.37170879                #> #> Model Statistics: #>                |  Parameters  |  Degrees of Freedom  |  Fit (-2lnL units)#>        Model:             41                    784              3274.152#>    Saturated:             77                    748                    NA#> Independence:             22                    803                    NA#> Number of observations/statistics: 75/825#> #> Information Criteria: #>       |  df Penalty  |  Parameters Penalty  |  Sample-Size Adjusted#> AIC:       1706.152               3356.152                 3460.515#> BIC:       -110.759               3451.169                 3321.947#> To get additional fit indices, see help(mxRefModels)#> timestamp: 2024-07-21 20:44:38 #> Wall clock time: 0.1139431 secs #> optimizer:  SLSQP #> OpenMx version number: 2.21.11 #> Need help?  See help(mxSummary)

Adding bounds

Lower and upper bounds can be added to any of the parameters in themodel. The following demonstrates bounds on a loading:

library(mxsem)model<-'  # latent variable definitions     ind60 =~ x1 + x2 + x3     dem60 =~ y1 + a1*y2 + b*y3 + c1*y4     dem65 =~ y5 + a2*y6 + b*y7 + c2*y8  # lower bound on a1     a1 > 0  # upper bound on a2     a2 < 10.123'mxsem(model=model,data=OpenMx::Bollen,# use latent variances to scale the modelscale_loadings=FALSE,scale_latent_variances=TRUE)|>  mxTryHard()|>  summary()
Show summary
#> Summary of untitled4 #>  #> free parameters:#>           name matrix   row   col    Estimate  Std.Error A lbound ubound#> 1     ind60→x1      A    x1 ind60 -0.66602168 0.06402911                #> 2     ind60→x2      A    x2 ind60 -1.45290840 0.12615652                #> 3     ind60→x3      A    x3 ind60 -1.21127230 0.12698816                #> 4     dem60→y1      A    y1 dem60  2.21018030 0.24806182                #> 5           a1      A    y2 dem60  2.98303646 0.39464650        0       #> 6            b      A    y3 dem60  2.52119429 0.27195610                #> 7           c1      A    y4 dem60  2.86625955 0.31512659                #> 8     dem65→y5      A    y5 dem65  2.08192035 0.25256395                #> 9           a2      A    y6 dem65  2.61417796 0.33067157          10.123#> 10          c2      A    y8 dem65  2.72104603 0.30578894                #> 11       x1↔x1      S    x1    x1  0.08176774 0.01979715    1e-06       #> 12       x2↔x2      S    x2    x2  0.11868552 0.07038039    1e-06       #> 13       x3↔x3      S    x3    x3  0.46717050 0.08933577    1e-06       #> 14       y1↔y1      S    y1    y1  1.92282818 0.40072499    1e-06       #> 15       y2↔y2      S    y2    y2  6.51159526 1.20284012    1e-06       #> 16       y3↔y3      S    y3    y3  5.31392061 0.95937939    1e-06       #> 17       y4↔y4      S    y4    y4  2.88902582 0.63409911    1e-06       #> 18       y5↔y5      S    y5    y5  2.38176160 0.45553891    1e-06       #> 19       y6↔y6      S    y6    y6  4.36051128 0.82332444    1e-06       #> 20       y7↔y7      S    y7    y7  3.58248880 0.68191696    1e-06       #> 21       y8↔y8      S    y8    y8  2.95767562 0.62791664    1e-06       #> 22 ind60↔dem60      S ind60 dem60 -0.43953545 0.10490002                #> 23 ind60↔dem65      S ind60 dem65 -0.54935145 0.09041729                #> 24 dem60↔dem65      S dem60 dem65  0.97753003 0.02697925                #> 25      one→x1      M     1    x1  5.05438406 0.08369988                #> 26      one→x2      M     1    x2  4.79219545 0.17243259                #> 27      one→x3      M     1    x3  3.55769028 0.16060761                #> 28      one→y1      M     1    y1  5.46466541 0.30131941                #> 29      one→y2      M     1    y2  4.25644008 0.45333817                #> 30      one→y3      M     1    y3  6.56310968 0.39450506                #> 31      one→y4      M     1    y4  4.45253268 0.38484200                #> 32      one→y5      M     1    y5  5.13625169 0.29928682                #> 33      one→y6      M     1    y6  2.97807303 0.38639154                #> 34      one→y7      M     1    y7  6.19626363 0.36407370                #> 35      one→y8      M     1    y8  4.04338969 0.37174814                #> #> Model Statistics: #>                |  Parameters  |  Degrees of Freedom  |  Fit (-2lnL units)#>        Model:             35                    790              3130.995#>    Saturated:             77                    748                    NA#> Independence:             22                    803                    NA#> Number of observations/statistics: 75/825#> #> Information Criteria: #>       |  df Penalty  |  Parameters Penalty  |  Sample-Size Adjusted#> AIC:      1550.9954               3200.995                 3265.611#> BIC:      -279.8202               3282.107                 3171.797#> To get additional fit indices, see help(mxRefModels)#> timestamp: 2024-07-21 20:44:40 #> Wall clock time: 0.2327423 secs #> optimizer:  SLSQP #> OpenMx version number: 2.21.11 #> Need help?  See help(mxSummary)

mxsem adds lower bounds to any of the variances by default. Toremove these lower bounds, setlbound_variances = FALSE when callingmxsem().

Definition Variables

Definition variables are, for instance, used in latent growth curvemodels when the time intervals between observations are different forthe subjects in the data set. Here is an example, where the variablest_1-t_5 indicate the person-specific times of observation:

library(mxsem)set.seed(3489)dataset<- simulate_latent_growth_curve(N=100)head(dataset)#>             y1       y2       y3        y4         y5 t_1       t_2      t_3#> [1,] 1.2817946 5.159870 7.178191  8.950046 11.4822306   0 1.5792322 2.304777#> [2,] 1.1796379 3.588279 5.927219  8.381157 10.4640667   0 1.6701976 3.530621#> [3,] 0.2196010 0.763441 2.499564  3.672995  4.4505868   0 0.6452145 2.512730#> [4,] 0.5688185 1.440709 1.523483  1.416965  1.9674847   0 1.7171826 3.245522#> [5,] 3.4928919 2.620657 1.753159  1.080701 -0.4436508   0 1.4055839 2.024568#> [6,] 0.3520293 5.126854 7.390669 10.721785 12.6363472   0 1.5249299 2.400432#>           t_4      t_5#> [1,] 3.120797 4.217403#> [2,] 5.004695 6.408367#> [3,] 3.761189 4.729461#> [4,] 4.331997 6.145424#> [5,] 3.570780 5.517224#> [6,] 3.654230 4.222212

InOpenMx, parameters can be set to the values found in the columnsof the data set with thedata. prefix. This is used in the followingto fix the loadings of a latent slope variable on the observations tothe times recorded int_1-t_5:

library(mxsem)model<-"  # specify latent intercept     I =~ 1*y1 + 1*y2 + 1*y3 + 1*y4 + 1*y5  # specify latent slope     S =~ data.t_1 * y1 + data.t_2 * y2 + data.t_3 * y3 + data.t_4 * y4 + data.t_5 * y5  # specify means of latent intercept and slope     I ~ int*1     S ~ slp*1  # set intercepts of manifest variables to zero     y1 ~ 0*1; y2 ~ 0*1; y3 ~ 0*1; y4 ~ 0*1; y5 ~ 0*1;"mxsem(model=model,data=dataset)|>  mxTryHard()|>  summary()
Show summary
#> Summary of untitled6 #>  #> free parameters:#>     name matrix row col    Estimate   Std.Error A lbound ubound#> 1  y1↔y1      S  y1  y1  0.02578029 0.014488230       0!       #> 2  y2↔y2      S  y2  y2  0.04010524 0.008389744       0!       #> 3  y3↔y3      S  y3  y3  0.04008175 0.006984929       0!       #> 4  y4↔y4      S  y4  y4  0.01752572 0.006930952 !     0!       #> 5  y5↔y5      S  y5  y5  0.05936968 0.016067405    1e-06       #> 6    I↔I      S   I   I  1.02593614 0.148068976    1e-06       #> 7    I↔S      S   I   S -0.14724710 0.110019557                #> 8    S↔S      S   S   S  1.13050977 0.160502645    1e-06       #> 9    int      M   1   I  0.93112329 0.102209132                #> 10   slp      M   1   S  0.48442608 0.106476404                #> #> Model Statistics: #>                |  Parameters  |  Degrees of Freedom  |  Fit (-2lnL units)#>        Model:             10                     10              841.2609#>    Saturated:             20                      0                    NA#> Independence:             10                     10                    NA#> Number of observations/statistics: 100/20#> #> Information Criteria: #>       |  df Penalty  |  Parameters Penalty  |  Sample-Size Adjusted#> AIC:       821.2609               861.2609                 863.7328#> BIC:       795.2092               887.3126                 855.7301#> To get additional fit indices, see help(mxRefModels)#> timestamp: 2024-07-21 20:44:41 #> Wall clock time: 0.4582329 secs #> optimizer:  SLSQP #> OpenMx version number: 2.21.11 #> Need help?  See help(mxSummary)

Transformations

Sometimes, one may want to express one parameter as a function of otherparameters. In moderated non-linear factor analysis, for example, modelparameters are often expressed in terms of a covariate k. For instance,the effect$a$ of$\xi$ on$\eta$ could be expressed as$a = a_0 + a_1\times k$.

library(mxsem)set.seed(9820)dataset<- simulate_moderated_nonlinear_factor_analysis(N=100)head(dataset)#>              x1         x2         x3          y1         y2            y3 k#> [1,] -1.2166034 -1.2374549 -1.3731943 -1.01018683 -0.8296293 -1.2300555484 0#> [2,]  1.1911346  0.9971499  1.0226322  0.86048030  0.4509088  0.6052786392 1#> [3,] -0.7777169 -0.4725291 -0.8507347 -1.09582848 -0.5035753 -0.8048378456 0#> [4,]  1.0027847  1.2351709  0.6951317  0.94040287  0.6684979  0.6596891858 0#> [5,]  0.4387896  0.3919877  0.3260557 -0.58188691 -0.3614349 -0.4901022121 0#> [6,] -1.4951549 -0.8834637 -1.1715535  0.01173845 -0.4697865 -0.0006475256 0

mxsem currently supports two ways of specifying suchtransformations. First, they can be specified explicitly. To this end,the parameters$a_0$ and$a_1$ must fist be initialized with!a0 and!a1. Additionally, the transformation must be defined witha := a0 + a1*data.k.

model<-"  # loadings     xi =~ x1 + x2 + x3     eta =~ y1 + y2 + y3  # regression     eta ~ a*xi  # we need two new parameters: a0 and a1. These are created as follows:     !a0     !a1  # Now, we redefine a to be a0 + k*a1, where k is found in the data     a := a0 + data.k*a1"fit_mx<- mxsem(model=model,data=dataset)|>  mxTryHard()summary(fit_mx)# get just the value for parameter a:mxEval(expression=a,model=fit_mx)
Show summary
#> Summary of untitled20 #>  #> free parameters:#>       name         matrix row col    Estimate   Std.Error A lbound ubound#> 1    xi→x2              A  x2  xi  0.79157856 0.026246030                #> 2    xi→x3              A  x3  xi  0.89166084 0.027991530                #> 3   eta→y2              A  y2 eta  0.81610417 0.028977422                #> 4   eta→y3              A  y3 eta  0.90741898 0.027924339                #> 5    x1↔x1              S  x1  x1  0.04060218 0.011022272       0!       #> 6    x2↔x2              S  x2  x2  0.04519854 0.008621602       0!       #> 7    x3↔x3              S  x3  x3  0.04647176 0.010143713       0!       #> 8    y1↔y1              S  y1  y1  0.03388953 0.008495337       0!       #> 9    y2↔y2              S  y2  y2  0.04210954 0.007766716 !     0!       #> 10   y3↔y3              S  y3  y3  0.03107018 0.007268297 !     0!       #> 11   xi↔xi              S  xi  xi  1.07304573 0.157790632    1e-06       #> 12 eta↔eta              S eta eta  0.26127595 0.041232498    1e-06       #> 13  one→x1              M   1  x1 -0.14881004 0.105059830                #> 14  one→x2              M   1  x2 -0.10969640 0.084340983                #> 15  one→x3              M   1  x3 -0.15448448 0.094428639                #> 16  one→y1              M   1  y1 -0.05304588 0.089763143                #> 17  one→y2              M   1  y2 -0.13040824 0.074580498                #> 18  one→y3              M   1  y3 -0.05666192 0.081649015                #> 19      a0 new_parameters   1   1  0.78168122 0.069380240                #> 20      a1 new_parameters   1   2 -0.19334116 0.107739139                #> #> Model Statistics: #>                |  Parameters  |  Degrees of Freedom  |  Fit (-2lnL units)#>        Model:             20                      7              475.3822#>    Saturated:             27                      0                    NA#> Independence:             12                     15                    NA#> Number of observations/statistics: 100/27#> #> Information Criteria: #>       |  df Penalty  |  Parameters Penalty  |  Sample-Size Adjusted#> AIC:       461.3822               515.3822                 526.0151#> BIC:       443.1460               567.4856                 504.3206#> To get additional fit indices, see help(mxRefModels)#> timestamp: 2024-07-21 20:44:42 #> Wall clock time: 0.07763433 secs #> optimizer:  SLSQP #> OpenMx version number: 2.21.11 #> Need help?  See help(mxSummary)#>           [,1]#> [1,] 0.7816812

Alternatively, the transformations can be defined implicitly by placingthe algebra in curly braces and directly inserting it in the syntax inplace of the parameter label. This is inspired by the approach inmetaSEM (Cheung, 2015).

model<-"  # loadings     xi =~ x1 + x2 + x3     eta =~ y1 + y2 + y3  # regression     eta ~ {a0 + a1*data.k} * xi"mxsem(model=model,data=dataset)|>  mxTryHard()|>  summary()
Show summary
#> Summary of untitled48 #>  #> free parameters:#>       name         matrix row col    Estimate   Std.Error A lbound ubound#> 1    xi→x2              A  x2  xi  0.79157856 0.026246030                #> 2    xi→x3              A  x3  xi  0.89166084 0.027991530                #> 3   eta→y2              A  y2 eta  0.81610417 0.028977422                #> 4   eta→y3              A  y3 eta  0.90741898 0.027924339                #> 5    x1↔x1              S  x1  x1  0.04060218 0.011022272       0!       #> 6    x2↔x2              S  x2  x2  0.04519854 0.008621602       0!       #> 7    x3↔x3              S  x3  x3  0.04647176 0.010143713       0!       #> 8    y1↔y1              S  y1  y1  0.03388953 0.008495337       0!       #> 9    y2↔y2              S  y2  y2  0.04210954 0.007766716 !     0!       #> 10   y3↔y3              S  y3  y3  0.03107018 0.007268297 !     0!       #> 11   xi↔xi              S  xi  xi  1.07304573 0.157790632    1e-06       #> 12 eta↔eta              S eta eta  0.26127595 0.041232498    1e-06       #> 13  one→x1              M   1  x1 -0.14881004 0.105059830                #> 14  one→x2              M   1  x2 -0.10969640 0.084340983                #> 15  one→x3              M   1  x3 -0.15448448 0.094428639                #> 16  one→y1              M   1  y1 -0.05304588 0.089763143                #> 17  one→y2              M   1  y2 -0.13040824 0.074580498                #> 18  one→y3              M   1  y3 -0.05666192 0.081649015                #> 19      a0 new_parameters   1   1  0.78168122 0.069380240                #> 20      a1 new_parameters   1   2 -0.19334116 0.107739139                #> #> Model Statistics: #>                |  Parameters  |  Degrees of Freedom  |  Fit (-2lnL units)#>        Model:             20                      7              475.3822#>    Saturated:             27                      0                    NA#> Independence:             12                     15                    NA#> Number of observations/statistics: 100/27#> #> Information Criteria: #>       |  df Penalty  |  Parameters Penalty  |  Sample-Size Adjusted#> AIC:       461.3822               515.3822                 526.0151#> BIC:       443.1460               567.4856                 504.3206#> To get additional fit indices, see help(mxRefModels)#> timestamp: 2024-07-21 20:44:42 #> Wall clock time: 0.0693748 secs #> optimizer:  SLSQP #> OpenMx version number: 2.21.11 #> Need help?  See help(mxSummary)

You can also provide custom names for the algebra results:

model<-"  # loadings     xi  =~ x1 + x2 + x3     eta =~ y1 + y2 + y3  # regression     eta ~ {a := a0 + a1*data.k} * xi"fit_mx<- mxsem(model=model,data=dataset)|>  mxTryHard()summary(fit_mx)# get just the value for parameter a:mxEval(expression=a,model=fit_mx)
Show summary
#> Summary of untitled76 #>  #> free parameters:#>       name         matrix row col    Estimate   Std.Error A lbound ubound#> 1    xi→x2              A  x2  xi  0.79157856 0.026246030                #> 2    xi→x3              A  x3  xi  0.89166084 0.027991530                #> 3   eta→y2              A  y2 eta  0.81610417 0.028977422                #> 4   eta→y3              A  y3 eta  0.90741898 0.027924339                #> 5    x1↔x1              S  x1  x1  0.04060218 0.011022272       0!       #> 6    x2↔x2              S  x2  x2  0.04519854 0.008621602       0!       #> 7    x3↔x3              S  x3  x3  0.04647176 0.010143713       0!       #> 8    y1↔y1              S  y1  y1  0.03388953 0.008495337       0!       #> 9    y2↔y2              S  y2  y2  0.04210954 0.007766716 !     0!       #> 10   y3↔y3              S  y3  y3  0.03107018 0.007268297 !     0!       #> 11   xi↔xi              S  xi  xi  1.07304573 0.157790632    1e-06       #> 12 eta↔eta              S eta eta  0.26127595 0.041232498    1e-06       #> 13  one→x1              M   1  x1 -0.14881004 0.105059830                #> 14  one→x2              M   1  x2 -0.10969640 0.084340983                #> 15  one→x3              M   1  x3 -0.15448448 0.094428639                #> 16  one→y1              M   1  y1 -0.05304588 0.089763143                #> 17  one→y2              M   1  y2 -0.13040824 0.074580498                #> 18  one→y3              M   1  y3 -0.05666192 0.081649015                #> 19      a0 new_parameters   1   1  0.78168122 0.069380240                #> 20      a1 new_parameters   1   2 -0.19334116 0.107739139                #> #> Model Statistics: #>                |  Parameters  |  Degrees of Freedom  |  Fit (-2lnL units)#>        Model:             20                      7              475.3822#>    Saturated:             27                      0                    NA#> Independence:             12                     15                    NA#> Number of observations/statistics: 100/27#> #> Information Criteria: #>       |  df Penalty  |  Parameters Penalty  |  Sample-Size Adjusted#> AIC:       461.3822               515.3822                 526.0151#> BIC:       443.1460               567.4856                 504.3206#> To get additional fit indices, see help(mxRefModels)#> timestamp: 2024-07-21 20:44:43 #> Wall clock time: 0.0685575 secs #> optimizer:  SLSQP #> OpenMx version number: 2.21.11 #> Need help?  See help(mxSummary)#>           [,1]#> [1,] 0.7816812

Adapting the Model

mxsem returns anmxModel object that can be adapted further by usersfamiliar withOpenMx.

Trouble shooting

Sometimes things may go wrong. One way to figure out wheremxsemmessed up is to look at the parameter table generated internally. Thisparameter table is not returned by default. Seevignette("create_parameter_table", package = "mxsem") for moredetails.

Another point of failure are the default labels used bymxsem toindicate directed and undirected effects. These are based on unicodecharacters. If you see parameter labels similar to"eta\u2192y1" inyour output, this indicates that your editor cannot display unicodecharacters. In this case, you can customize the labels as follows:

library(mxsem)model<-'  # latent variable definitions     ind60 =~ x1 + x2 + x3     dem60 =~ y1 + a1*y2 + b*y3 + c1*y4     dem65 =~ y5 + a2*y6 + b*y7 + c2*y8'mxsem(model=model,data=OpenMx::Bollen,directed="_TO_",undirected="_WITH_")|>  mxTryHard()|>  summary()
Show summary
#> Summary of untitled90 #>  #> free parameters:#>                name matrix   row   col   Estimate  Std.Error A lbound ubound#> 1       ind60_TO_x2      A    x2 ind60 2.18115702 0.13928666                #> 2       ind60_TO_x3      A    x3 ind60 1.81852890 0.15228797                #> 3                a1      A    y2 dem60 1.40364256 0.18390038                #> 4                 b      A    y3 dem60 1.17009172 0.10871747                #> 5                c1      A    y4 dem60 1.34853386 0.14637663                #> 6                a2      A    y6 dem65 1.20074512 0.14855357                #> 7                c2      A    y8 dem65 1.25031848 0.13637438                #> 8        x1_WITH_x1      S    x1    x1 0.08169539 0.01979123    1e-06       #> 9        x2_WITH_x2      S    x2    x2 0.11895803 0.07035954    1e-06       #> 10       x3_WITH_x3      S    x3    x3 0.46715652 0.08931226    1e-06       #> 11       y1_WITH_y1      S    y1    y1 1.96249145 0.40675153 !  1e-06       #> 12       y2_WITH_y2      S    y2    y2 6.49922273 1.20251628    1e-06       #> 13       y3_WITH_y3      S    y3    y3 5.32559112 0.95894588    1e-06       #> 14       y4_WITH_y4      S    y4    y4 2.87950917 0.63665763    1e-06       #> 15       y5_WITH_y5      S    y5    y5 2.37088343 0.45487035    1e-06       #> 16       y6_WITH_y6      S    y6    y6 4.37313277 0.82251242    1e-06       #> 17       y7_WITH_y7      S    y7    y7 3.56699590 0.68171379    1e-06       #> 18       y8_WITH_y8      S    y8    y8 2.96557681 0.62443800 !  1e-06       #> 19 ind60_WITH_ind60      S ind60 ind60 0.44829143 0.08675629    1e-06       #> 20 ind60_WITH_dem60      S ind60 dem60 0.63807497 0.19920187                #> 21 dem60_WITH_dem60      S dem60 dem60 4.50351167 1.00616960    1e-06       #> 22 ind60_WITH_dem65      S ind60 dem65 0.81413650 0.21697272                #> 23 dem60_WITH_dem65      S dem60 dem65 4.52636825 0.93243049                #> 24 dem65_WITH_dem65      S dem65 dem65 4.75141153 1.04835747    1e-06       #> 25        one_TO_x1      M     1    x1 5.05438446 0.08405796                #> 26        one_TO_x2      M     1    x2 4.79219580 0.17325941                #> 27        one_TO_x3      M     1    x3 3.55769067 0.16122376                #> 28        one_TO_y1      M     1    y1 5.46466750 0.29359270                #> 29        one_TO_y2      M     1    y2 4.25644400 0.45268169                #> 30        one_TO_y3      M     1    y3 6.56311167 0.39140003                #> 31        one_TO_y4      M     1    y4 4.45253335 0.38413637                #> 32        one_TO_y5      M     1    y5 5.13625263 0.30813153                #> 33        one_TO_y6      M     1    y6 2.97807393 0.38680848                #> 34        one_TO_y7      M     1    y7 6.19626358 0.36642683                #> 35        one_TO_y8      M     1    y8 4.04339058 0.37222072                #> #> Model Statistics: #>                |  Parameters  |  Degrees of Freedom  |  Fit (-2lnL units)#>        Model:             35                    790              3131.168#>    Saturated:             77                    748                    NA#> Independence:             22                    803                    NA#> Number of observations/statistics: 75/825#> #> Information Criteria: #>       |  df Penalty  |  Parameters Penalty  |  Sample-Size Adjusted#> AIC:      1551.1683               3201.168                 3265.784#> BIC:      -279.6473               3282.280                 3171.970#> To get additional fit indices, see help(mxRefModels)#> timestamp: 2024-07-21 20:44:44 #> Wall clock time: 0.1770966 secs #> optimizer:  SLSQP #> OpenMx version number: 2.21.11 #> Need help?  See help(mxSummary)

References

About

A lavaan-like syntax for structural equation models with OpenMx

Topics

Resources

License

Stars

Watchers

Forks

Contributors2

  •  
  •  

[8]ページ先頭

©2009-2025 Movatter.jp