Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

License

NotificationsYou must be signed in to change notification settings

imanoop7/Ollama-OCR

Repository files navigation

StargazersCommit ActivityLast Commit

Ollama OCR Logo

Ollama OCR

A powerful OCR (Optical Character Recognition) package that uses state-of-the-art vision language models through Ollama to extract text from images and PDF. Available both as a Python package and a Streamlit web application.

🌟 Features

Supports PDF and Images (New! 🆕)

  • Multiple Vision Models Support

    • LLaVA: Efficient vision-language model for real-time processing (LLaVa model can generate wrong output sometimes)
    • Llama 3.2 Vision: Advanced model with high accuracy for complex documents
    • Granite3.2-vision: A compact and efficient vision-language model, specifically designed for visual document understanding, enabling automated content extraction from tables, charts, infographics, plots, diagrams, and more.
    • Moondream: Small vision language model designed to run efficiently on edge devices.
    • Minicpm-v: MiniCPM-V 2.6 can process images with any aspect ratio and up to 1.8 million pixels (e.g., 1344x1344).
  • Multiple Output Formats

    • Markdown: Preserves text formatting with headers and lists
    • Plain Text: Clean, simple text extraction
    • JSON: Structured data format
    • Structured: Tables and organized data
    • Key-Value Pairs: Extracts labeled information
    • Table: Extract all tabular data.
  • Batch Processing

    • Process multiple images in parallel
    • Progress tracking for each image
    • Image preprocessing (resize, normalize, etc.)
  • Custom Prompts

    • Override default prompts with custom instructions for text extraction.

📦 Package Installation

pip install ollama-ocr

🚀 Quick Start

Prerequisites

  1. Install Ollama
  2. Pull the required model:
ollama pull llama3.2-vision:11bollama pull granite3.2-visionollama pull moondreamollama pull minicpm-v

Using the Package

Single File Processing

fromollama_ocrimportOCRProcessor# Initialize OCR processorocr=OCRProcessor(model_name='llama3.2-vision:11b',base_url="http://host.docker.internal:11434/api/generate")# You can use any vision model available on Ollama# you can pass your custom ollama api# Process an imageresult=ocr.process_image(image_path="path/to/your/image.png",# path to your pdf files "path/to/your/file.pdf"format_type="markdown",# Options: markdown, text, json, structured, key_valuecustom_prompt="Extract all text, focusing on dates and names.",# Optional custom promptlanguage="English"# Specify the language of the text (New! 🆕))print(result)

Batch File

fromollama_ocrimportOCRProcessor# Initialize OCR processorocr=OCRProcessor(model_name='llama3.2-vision:11b',max_workers=4)# max workers for parallel processing# Process multiple images# Process multiple images with progress trackingbatch_results=ocr.process_batch(input_path="path/to/images/folder",# Directory or list of image pathsformat_type="markdown",recursive=True,# Search subdirectoriespreprocess=True,# Enable image preprocessingcustom_prompt="Extract all text, focusing on dates and names.",# Optional custom promptlanguage="English"# Specify the language of the text (New! 🆕))# Access resultsforfile_path,textinbatch_results['results'].items():print(f"\nFile:{file_path}")print(f"Extracted Text:{text}")# View statisticsprint("\nProcessing Statistics:")print(f"Total images:{batch_results['statistics']['total']}")print(f"Successfully processed:{batch_results['statistics']['successful']}")print(f"Failed:{batch_results['statistics']['failed']}")

📋 Output Format Details

  1. Markdown Format: The output is a markdown string containing the extracted text from the image.
  2. Text Format: The output is a plain text string containing the extracted text from the image.
  3. JSON Format: The output is a JSON object containing the extracted text from the image.
  4. Structured Format: The output is a structured object containing the extracted text from the image.
  5. Key-Value Format: The output is a dictionary containing the extracted text from the image.
  6. Table Format: Extract all tabular data.

🌐 Streamlit Web Application(supports batch processing)

  • User-Friendly Interface
    • Drag-and-drop file upload
    • Real-time processing
    • Download extracted text
    • Image preview with details
    • Responsive design
    • Language Selection: Specify the language for better OCR accuracy. (New! 🆕)
  1. Clone the repository:
git clone https://github.com/imanoop7/Ollama-OCR.gitcd Ollama-OCR
  1. Install dependencies:
pip install -r requirements.txt
  1. Go to the directory where app.py is located:
cd src/ollama_ocr
  1. Run the Streamlit app:
streamlit run app.py

📒 Example Notebooks

Examples Output

Input Image

Input Image

Sample Output

Sample OutputSample Output

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

Built with OllamaPowered by Vision Models

Star History

Star History Chart

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors4

  •  
  •  
  •  
  •  

[8]ページ先頭

©2009-2025 Movatter.jp