|
| 1 | +packagecom.fishercoder.solutions; |
| 2 | + |
| 3 | +importcom.fishercoder.common.classes.TreeNode; |
| 4 | + |
| 5 | +importjava.util.*; |
| 6 | + |
| 7 | +/** |
| 8 | + * 652. Find Duplicate Subtrees |
| 9 | + * |
| 10 | + * Given a binary tree, return all duplicate subtrees. For each kind of duplicate subtrees, you only need to return the root node of any one of them. |
| 11 | +
|
| 12 | + Two trees are duplicate if they have the same structure with same node values. |
| 13 | +
|
| 14 | + Example 1: |
| 15 | + 1 |
| 16 | + / \ |
| 17 | + 2 3 |
| 18 | + / / \ |
| 19 | + 4 2 4 |
| 20 | + / |
| 21 | + 4 |
| 22 | + The following are two duplicate subtrees: |
| 23 | + 2 |
| 24 | + / |
| 25 | + 4 |
| 26 | + and |
| 27 | + 4 |
| 28 | +
|
| 29 | + Therefore, you need to return above trees' root in the form of a list. |
| 30 | + */ |
| 31 | +publicclass_652 { |
| 32 | + |
| 33 | +/**credit: https://discuss.leetcode.com/topic/97584/java-concise-postorder-traversal-solution*/ |
| 34 | +publicList<TreeNode>findDuplicateSubtrees(TreeNoderoot) { |
| 35 | +List<TreeNode>res =newLinkedList<>(); |
| 36 | +postorder(root,newHashMap<>(),res); |
| 37 | +returnres; |
| 38 | + } |
| 39 | + |
| 40 | +privateStringpostorder(TreeNodecurr,HashMap<String,Integer>map,List<TreeNode>res) { |
| 41 | +if (curr ==null)return"#"; |
| 42 | +Stringserial =curr.val +"," +postorder(curr.left,map,res) +"," +postorder(curr.right,map,res); |
| 43 | +if (map.getOrDefault(serial,0) ==1) { |
| 44 | +res.add(curr); |
| 45 | + } |
| 46 | +map.put(serial,map.getOrDefault(serial,0) +1); |
| 47 | +returnserial; |
| 48 | + } |
| 49 | + |
| 50 | + |
| 51 | +publicclassMyOriginalSolution { |
| 52 | +/**This solution is blocked at [2,1,1] test case and I've asked a question here: |
| 53 | + * https://discuss.leetcode.com/topic/97746/oj-bug-for-test-case-2-1-1-or-somewhere-my-code-is-wrong*/ |
| 54 | + |
| 55 | +/** |
| 56 | + * Use BFS to traverse each node, at this time, put each node into Map as key (except root node since root won't have duplicates), |
| 57 | + * then use DFS to visit all of its siblings to find possible duplite subtrees, |
| 58 | + * because duplicate could only possibly be found in siblings or sibling's children. |
| 59 | + */ |
| 60 | +publicList<TreeNode>findDuplicateSubtrees(TreeNoderoot) { |
| 61 | +List<TreeNode>result =newArrayList<>(); |
| 62 | +if (root ==null)returnresult; |
| 63 | +Map<TreeNode,List<TreeNode>>map =newHashMap<>(); |
| 64 | +Queue<TreeNode>oldQueue =newLinkedList<>(); |
| 65 | +Queue<TreeNode>newQueue =newLinkedList<>(); |
| 66 | +oldQueue.offer(root); |
| 67 | +while (!oldQueue.isEmpty()) { |
| 68 | +intsize =oldQueue.size(); |
| 69 | +for (inti =0;i <size;i++) { |
| 70 | +TreeNodecurr =oldQueue.poll(); |
| 71 | +if (curr.left !=null) { |
| 72 | +newQueue.offer(curr.left); |
| 73 | + } |
| 74 | +if (curr.right !=null) { |
| 75 | +newQueue.offer(curr.right); |
| 76 | + } |
| 77 | +if (curr !=root) { |
| 78 | +if (!map.containsKey(curr)) { |
| 79 | +map.put(curr,newArrayList<>()); |
| 80 | + } |
| 81 | + } |
| 82 | + } |
| 83 | +for (TreeNodetreeNode :newQueue) { |
| 84 | +findDuplicateSubtrees(treeNode,newQueue,map); |
| 85 | + } |
| 86 | +oldQueue =newQueue; |
| 87 | + } |
| 88 | +Set<TreeNode>set =newHashSet<>(); |
| 89 | +for (Map.Entry<TreeNode,List<TreeNode>>entry :map.entrySet()) { |
| 90 | +if (entry.getValue().size() >0) { |
| 91 | +set.add(entry.getKey()); |
| 92 | + } |
| 93 | + } |
| 94 | +result.addAll(set); |
| 95 | +returnresult; |
| 96 | + } |
| 97 | + |
| 98 | +privatevoidfindDuplicateSubtrees(TreeNodetreeNode,Queue<TreeNode>newQueue,Map<TreeNode,List<TreeNode>>map) { |
| 99 | +for (TreeNodetn :newQueue) { |
| 100 | +if (treeNode !=tn) { |
| 101 | +if (isSubtree(tn,treeNode)) { |
| 102 | +List<TreeNode>list =map.getOrDefault(treeNode,newArrayList<>()); |
| 103 | +list.add(tn); |
| 104 | +map.put(treeNode,list); |
| 105 | +return; |
| 106 | + } |
| 107 | + } |
| 108 | + } |
| 109 | + } |
| 110 | + |
| 111 | +privatebooleanisSubtree(TreeNodes,TreeNodet) { |
| 112 | +if (s ==null &&t ==null)returntrue; |
| 113 | +booleanisSubTree =false; |
| 114 | +if (s !=null &&t !=null &&s.val ==t.val)isSubTree =isSameTree(s,t); |
| 115 | +if (isSubTree)returntrue; |
| 116 | +booleanisSubTreeLeft =false; |
| 117 | +if (s.left !=null)isSubTreeLeft =isSubtree(s.left,t); |
| 118 | +if (isSubTreeLeft)returntrue; |
| 119 | +booleanisSubTreeRight =false; |
| 120 | +if (s.right !=null)isSubTreeRight =isSubtree(s.right,t); |
| 121 | +if (isSubTreeRight)returntrue; |
| 122 | +returnfalse; |
| 123 | + } |
| 124 | + |
| 125 | +privatebooleanisSameTree(TreeNodep,TreeNodeq) { |
| 126 | +if (p ==null ||q ==null)returnp ==q; |
| 127 | +returnp.val ==q.val &&isSameTree(p.left,q.left) &&isSameTree(p.right,q.right); |
| 128 | + } |
| 129 | + } |
| 130 | +} |