Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Use Hugging Face with JavaScript

License

NotificationsYou must be signed in to change notification settings

huggingface/huggingface.js

Repository files navigation


huggingface javascript library logo

// Programmatically interact with the HubawaitcreateRepo({repo:{type:"model",name:"my-user/nlp-model"},accessToken:HF_TOKEN});awaituploadFile({repo:"my-user/nlp-model",accessToken:HF_TOKEN,// Can work with native File in browsersfile:{path:"pytorch_model.bin",content:newBlob(...)}});// Use all supported Inference Providers!awaitinference.chatCompletion({model:"meta-llama/Llama-3.1-8B-Instruct",provider:"sambanova",// or together, fal-ai, replicate, cohere …messages:[{role:"user",content:"Hello, nice to meet you!",},],max_tokens:512,temperature:0.5,});awaitinference.textToImage({model:"black-forest-labs/FLUX.1-dev",provider:"replicate",inputs:"a picture of a green bird",});// and much more…

This is a collection of JS libraries to interact with the Hugging Face API, with TS types included.

  • @huggingface/inference: Use all supported (serverless) Inference Providers or switch to Inference Endpoints (dedicated) to make calls to 100,000+ Machine Learning models
  • @huggingface/hub: Interact with huggingface.co to create or delete repos and commit / download files
  • @huggingface/mcp-client: A Model Context Protocol (MCP) client, and a tiny Agent library, built on top of InferenceClient.
  • @huggingface/gguf: A GGUF parser that works on remotely hosted files.
  • @huggingface/dduf: Similar package for DDUF (DDUF Diffusers Unified Format)
  • @huggingface/tasks: The definition files and source-of-truth for the Hub's main primitives like pipeline tasks, model libraries, etc.
  • @huggingface/jinja: A minimalistic JS implementation of the Jinja templating engine, to be used for ML chat templates.
  • @huggingface/space-header: Use the Spacemini_header outside Hugging Face
  • @huggingface/ollama-utils: Various utilities for maintaining Ollama compatibility with models on the Hugging Face Hub.
  • @huggingface/tiny-agents: A tiny, model-agnostic library for building AI agents that can use tools.

We use modern features to avoid polyfills and dependencies, so the libraries will only work on modern browsers / Node.js >= 18 / Bun / Deno.

The libraries are still very young, please help us by opening issues!

Installation

From NPM

To install via NPM, you can download the libraries as needed:

npm install @huggingface/inferencenpm install @huggingface/hubnpm install @huggingface/mcp-client

Then import the libraries in your code:

import{InferenceClient}from"@huggingface/inference";import{createRepo,commit,deleteRepo,listFiles}from"@huggingface/hub";import{McpClient}from"@huggingface/mcp-client";importtype{RepoId}from"@huggingface/hub";

From CDN or Static hosting

You can run our packages with vanilla JS, without any bundler, by using a CDN or static hosting. UsingES modules, i.e.<script type="module">, you can import the libraries in your code:

<scripttype="module">import{InferenceClient}from'https://cdn.jsdelivr.net/npm/@huggingface/inference@4.5.3/+esm';import{createRepo,commit,deleteRepo,listFiles}from"https://cdn.jsdelivr.net/npm/@huggingface/hub@2.4.0/+esm";</script>

Deno

// esm.shimport{InferenceClient}from"https://esm.sh/@huggingface/inference"import{createRepo,commit,deleteRepo,listFiles}from"https://esm.sh/@huggingface/hub"// or npm:import{InferenceClient}from"npm:@huggingface/inference"import{createRepo,commit,deleteRepo,listFiles}from"npm:@huggingface/hub"

Usage examples

Get your HF access token in youraccount settings.

@huggingface/inference examples

import{InferenceClient}from"@huggingface/inference";constHF_TOKEN="hf_...";constclient=newInferenceClient(HF_TOKEN);// Chat completion APIconstout=awaitclient.chatCompletion({model:"meta-llama/Llama-3.1-8B-Instruct",messages:[{role:"user",content:"Hello, nice to meet you!"}],max_tokens:512});console.log(out.choices[0].message);// Streaming chat completion APIforawait(constchunkofclient.chatCompletionStream({model:"meta-llama/Llama-3.1-8B-Instruct",messages:[{role:"user",content:"Hello, nice to meet you!"}],max_tokens:512})){console.log(chunk.choices[0].delta.content);}/// Using a third-party provider:awaitclient.chatCompletion({model:"meta-llama/Llama-3.1-8B-Instruct",messages:[{role:"user",content:"Hello, nice to meet you!"}],max_tokens:512,provider:"sambanova",// or together, fal-ai, replicate, cohere …})awaitclient.textToImage({model:"black-forest-labs/FLUX.1-dev",inputs:"a picture of a green bird",provider:"fal-ai",})// You can also omit "model" to use the recommended model for the taskawaitclient.translation({inputs:"My name is Wolfgang and I live in Amsterdam",parameters:{src_lang:"en",tgt_lang:"fr",},});// pass multimodal files or URLs as inputsawaitclient.imageToText({model:'nlpconnect/vit-gpt2-image-captioning',data:await(awaitfetch('https://picsum.photos/300/300')).blob(),})// Using your own dedicated inference endpoint: https://hf.co/docs/inference-endpoints/constgpt2Client=client.endpoint('https://xyz.eu-west-1.aws.endpoints.huggingface.cloud/gpt2');const{ generated_text}=awaitgpt2Client.textGeneration({inputs:'The answer to the universe is'});// Chat CompletionconstllamaEndpoint=client.endpoint("https://router.huggingface.co/hf-inference/models/meta-llama/Llama-3.1-8B-Instruct");constout=awaitllamaEndpoint.chatCompletion({model:"meta-llama/Llama-3.1-8B-Instruct",messages:[{role:"user",content:"Hello, nice to meet you!"}],max_tokens:512,});console.log(out.choices[0].message);

@huggingface/hub examples

import{createRepo,uploadFile,deleteFiles}from"@huggingface/hub";constHF_TOKEN="hf_...";awaitcreateRepo({repo:"my-user/nlp-model",// or { type: "model", name: "my-user/nlp-test" },accessToken:HF_TOKEN});awaituploadFile({repo:"my-user/nlp-model",accessToken:HF_TOKEN,// Can work with native File in browsersfile:{path:"pytorch_model.bin",content:newBlob(...)}});awaitdeleteFiles({repo:{type:"space",name:"my-user/my-space"},// or "spaces/my-user/my-space"accessToken:HF_TOKEN,paths:["README.md",".gitattributes"]});

@huggingface/mcp-client example

import{Agent}from'@huggingface/mcp-client';constHF_TOKEN="hf_...";constagent=newAgent({provider:"auto",model:"Qwen/Qwen2.5-72B-Instruct",apiKey:HF_TOKEN,servers:[{// Playwright MCPcommand:"npx",args:["@playwright/mcp@latest"],},],});awaitagent.loadTools();forawait(constchunkofagent.run("What are the top 5 trending models on Hugging Face?")){if("choices"inchunk){constdelta=chunk.choices[0]?.delta;if(delta.content){console.log(delta.content);}}}

There are more features of course, check each library's README!

Formatting & testing

sudo corepack enablepnpm installpnpm -r format:checkpnpm -r lint:checkpnpm -r test

Building

pnpm -r build

This will generate ESM and CJS javascript files inpackages/*/dist, egpackages/inference/dist/index.mjs.


[8]ページ先頭

©2009-2025 Movatter.jp