- Notifications
You must be signed in to change notification settings - Fork468
Use Hugging Face with JavaScript
License
huggingface/huggingface.js
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
// Programmatically interact with the HubawaitcreateRepo({repo:{type:"model",name:"my-user/nlp-model"},accessToken:HF_TOKEN});awaituploadFile({repo:"my-user/nlp-model",accessToken:HF_TOKEN,// Can work with native File in browsersfile:{path:"pytorch_model.bin",content:newBlob(...)}});// Use all supported Inference Providers!awaitinference.chatCompletion({model:"meta-llama/Llama-3.1-8B-Instruct",provider:"sambanova",// or together, fal-ai, replicate, cohere …messages:[{role:"user",content:"Hello, nice to meet you!",},],max_tokens:512,temperature:0.5,});awaitinference.textToImage({model:"black-forest-labs/FLUX.1-dev",provider:"replicate",inputs:"a picture of a green bird",});// and much more…
This is a collection of JS libraries to interact with the Hugging Face API, with TS types included.
- @huggingface/inference: Use all supported (serverless) Inference Providers or switch to Inference Endpoints (dedicated) to make calls to 100,000+ Machine Learning models
- @huggingface/hub: Interact with huggingface.co to create or delete repos and commit / download files
- @huggingface/mcp-client: A Model Context Protocol (MCP) client, and a tiny Agent library, built on top of InferenceClient.
- @huggingface/gguf: A GGUF parser that works on remotely hosted files.
- @huggingface/dduf: Similar package for DDUF (DDUF Diffusers Unified Format)
- @huggingface/tasks: The definition files and source-of-truth for the Hub's main primitives like pipeline tasks, model libraries, etc.
- @huggingface/jinja: A minimalistic JS implementation of the Jinja templating engine, to be used for ML chat templates.
- @huggingface/space-header: Use the Space
mini_header
outside Hugging Face - @huggingface/ollama-utils: Various utilities for maintaining Ollama compatibility with models on the Hugging Face Hub.
- @huggingface/tiny-agents: A tiny, model-agnostic library for building AI agents that can use tools.
We use modern features to avoid polyfills and dependencies, so the libraries will only work on modern browsers / Node.js >= 18 / Bun / Deno.
The libraries are still very young, please help us by opening issues!
To install via NPM, you can download the libraries as needed:
npm install @huggingface/inferencenpm install @huggingface/hubnpm install @huggingface/mcp-client
Then import the libraries in your code:
import{InferenceClient}from"@huggingface/inference";import{createRepo,commit,deleteRepo,listFiles}from"@huggingface/hub";import{McpClient}from"@huggingface/mcp-client";importtype{RepoId}from"@huggingface/hub";
You can run our packages with vanilla JS, without any bundler, by using a CDN or static hosting. UsingES modules, i.e.<script type="module">
, you can import the libraries in your code:
<scripttype="module">import{InferenceClient}from'https://cdn.jsdelivr.net/npm/@huggingface/inference@4.5.3/+esm';import{createRepo,commit,deleteRepo,listFiles}from"https://cdn.jsdelivr.net/npm/@huggingface/hub@2.4.0/+esm";</script>
// esm.shimport{InferenceClient}from"https://esm.sh/@huggingface/inference"import{createRepo,commit,deleteRepo,listFiles}from"https://esm.sh/@huggingface/hub"// or npm:import{InferenceClient}from"npm:@huggingface/inference"import{createRepo,commit,deleteRepo,listFiles}from"npm:@huggingface/hub"
Get your HF access token in youraccount settings.
import{InferenceClient}from"@huggingface/inference";constHF_TOKEN="hf_...";constclient=newInferenceClient(HF_TOKEN);// Chat completion APIconstout=awaitclient.chatCompletion({model:"meta-llama/Llama-3.1-8B-Instruct",messages:[{role:"user",content:"Hello, nice to meet you!"}],max_tokens:512});console.log(out.choices[0].message);// Streaming chat completion APIforawait(constchunkofclient.chatCompletionStream({model:"meta-llama/Llama-3.1-8B-Instruct",messages:[{role:"user",content:"Hello, nice to meet you!"}],max_tokens:512})){console.log(chunk.choices[0].delta.content);}/// Using a third-party provider:awaitclient.chatCompletion({model:"meta-llama/Llama-3.1-8B-Instruct",messages:[{role:"user",content:"Hello, nice to meet you!"}],max_tokens:512,provider:"sambanova",// or together, fal-ai, replicate, cohere …})awaitclient.textToImage({model:"black-forest-labs/FLUX.1-dev",inputs:"a picture of a green bird",provider:"fal-ai",})// You can also omit "model" to use the recommended model for the taskawaitclient.translation({inputs:"My name is Wolfgang and I live in Amsterdam",parameters:{src_lang:"en",tgt_lang:"fr",},});// pass multimodal files or URLs as inputsawaitclient.imageToText({model:'nlpconnect/vit-gpt2-image-captioning',data:await(awaitfetch('https://picsum.photos/300/300')).blob(),})// Using your own dedicated inference endpoint: https://hf.co/docs/inference-endpoints/constgpt2Client=client.endpoint('https://xyz.eu-west-1.aws.endpoints.huggingface.cloud/gpt2');const{ generated_text}=awaitgpt2Client.textGeneration({inputs:'The answer to the universe is'});// Chat CompletionconstllamaEndpoint=client.endpoint("https://router.huggingface.co/hf-inference/models/meta-llama/Llama-3.1-8B-Instruct");constout=awaitllamaEndpoint.chatCompletion({model:"meta-llama/Llama-3.1-8B-Instruct",messages:[{role:"user",content:"Hello, nice to meet you!"}],max_tokens:512,});console.log(out.choices[0].message);
import{createRepo,uploadFile,deleteFiles}from"@huggingface/hub";constHF_TOKEN="hf_...";awaitcreateRepo({repo:"my-user/nlp-model",// or { type: "model", name: "my-user/nlp-test" },accessToken:HF_TOKEN});awaituploadFile({repo:"my-user/nlp-model",accessToken:HF_TOKEN,// Can work with native File in browsersfile:{path:"pytorch_model.bin",content:newBlob(...)}});awaitdeleteFiles({repo:{type:"space",name:"my-user/my-space"},// or "spaces/my-user/my-space"accessToken:HF_TOKEN,paths:["README.md",".gitattributes"]});
import{Agent}from'@huggingface/mcp-client';constHF_TOKEN="hf_...";constagent=newAgent({provider:"auto",model:"Qwen/Qwen2.5-72B-Instruct",apiKey:HF_TOKEN,servers:[{// Playwright MCPcommand:"npx",args:["@playwright/mcp@latest"],},],});awaitagent.loadTools();forawait(constchunkofagent.run("What are the top 5 trending models on Hugging Face?")){if("choices"inchunk){constdelta=chunk.choices[0]?.delta;if(delta.content){console.log(delta.content);}}}
There are more features of course, check each library's README!
sudo corepack enablepnpm installpnpm -r format:checkpnpm -r lint:checkpnpm -r test
pnpm -r build
This will generate ESM and CJS javascript files inpackages/*/dist
, egpackages/inference/dist/index.mjs
.
About
Use Hugging Face with JavaScript
Topics
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Packages0
Uh oh!
There was an error while loading.Please reload this page.