Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Inference, Fine Tuning and many more recipes with Gemma family of models

License

NotificationsYou must be signed in to change notification settings

huggingface/huggingface-gemma-recipes

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

54 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

repository thumbnail

🤗💎 Welcome! This repository containsminimal recipes to get started quickly with the Gemma family of models.

Note

Gemma 3n Conversational Fine tuning 2B on a Free Colab Notebook:Open In Colab

Gemma 3n Conversational Fine tuning 4B on a Free Colab Notebook:Open In Colab

Gemma 3n Multimodal Finetuning 2B/4B on a Free Colab Notebook:Open In Colab

Multimodal inference using Gemma 3n via pipeline:Open In Colab

Getting Started

To quickly run a Gemma 💎 model on your machine, install the latest version oftimm (for the vision encoder) and 🤗transformers to run inference, or if you want to fine tune it.

$ pip install -U -q transformers timm

Inference with pipeline

The easiest way to start using Gemma 3n is by using the pipeline abstraction in transformers:

importtorchfromtransformersimportpipelinepipe=pipeline("image-text-to-text",model="google/gemma-3n-E4B-it",# "google/gemma-3n-E4B-it"device="cuda",torch_dtype=torch.bfloat16)messages= [   {"role":"user","content": [           {"type":"image","url":"https://huggingface.co/datasets/ariG23498/demo-data/resolve/main/airplane.jpg"},           {"type":"text","text":"Describe this image"}       ]   }]output=pipe(text=messages,max_new_tokens=32)print(output[0]["generated_text"][-1]["content"])

Detailed inference with transformers

Initialize the model and the processor from the Hub, and write themodel_generation function that takes care of processing the prompts and running the inference on the model.

fromtransformersimportAutoProcessor,AutoModelForImageTextToTextimporttorchmodel_id="google/gemma-3n-e4b-it"# google/gemma-3n-e2b-itprocessor=AutoProcessor.from_pretrained(model_id)model=AutoModelForImageTextToText.from_pretrained(model_id).to(device)defmodel_generation(model,messages):inputs=processor.apply_chat_template(messages,add_generation_prompt=True,tokenize=True,return_dict=True,return_tensors="pt",    )input_len=inputs["input_ids"].shape[-1]inputs=inputs.to(model.device,dtype=model.dtype)withtorch.inference_mode():generation=model.generate(**inputs,max_new_tokens=32,disable_compile=False)generation=generation[:,input_len:]decoded=processor.batch_decode(generation,skip_special_tokens=True)print(decoded[0])

And then using calling it with our specific modality:

Text only

# Text Onlymessages= [    {"role":"user","content": [            {"type":"text","text":"What is the capital of France?"}        ]    }]model_generation(model,messages)

Interleaved with Audio

# Interleaved with Audiomessages= [    {"role":"user","content": [            {"type":"text","text":"Transcribe the following speech segment in English:"},            {"type":"audio","audio":"https://huggingface.co/datasets/ariG23498/demo-data/resolve/main/speech.wav"},        ]    }]model_generation(model,messages)

Interleaved with Image/Video

# Interleaved with Imagemessages= [    {"role":"user","content": [            {"type":"image","image":"https://huggingface.co/datasets/ariG23498/demo-data/resolve/main/airplane.jpg"},            {"type":"text","text":"Describe this image."}        ]    }]model_generation(model,messages)

Inference

Gemma 3n

Notebooks

Function Calling

Gemma 3n

Notebooks

Fine Tuning

We include a series of notebook+scripts for fine tuning the models.

Gemma 3n

Notebooks

Scripts

Gemma 3

RAG

Gemma 3n

Before fine-tuning the model, ensure all dependencies are installed:

$ pip install -U -q -r requirements.txt

Bonus: We've also experimented with addingobject detection 🔍 capabilities to Gemma 3. You can explore that work inthis dedicated repo.

About

Inference, Fine Tuning and many more recipes with Gemma family of models

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors8


[8]ページ先頭

©2009-2025 Movatter.jp