- Notifications
You must be signed in to change notification settings - Fork58
The all-in-one AI library for Persian, supporting a wide variety of tasks and modalities!
License
hezarai/hezar
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Hezar (meaningthousand in Persian) is a multipurpose AI library built to make AI easy for the Persian community!
Hezar is a library that:
- brings together all the best works in AI for Persian
- makes using AI models as easy as a couple of lines of code
- seamlessly integrates with Hugging Face Hub for all of its models
- has a highly developer-friendly interface
- has a task-based model interface which is more convenient for general users.
- is packed with additional tools like word embeddings, tokenizers, feature extractors, etc.
- comes with a lot of supplementary ML tools for deployment, benchmarking, optimization, etc.
- and more!
Hezar is available on PyPI and can be installed with pip (Python 3.10 and later):
pip install hezar
Note that Hezar is a collection of models and tools, hence having different installation variants:
pip install hezar[all] # For a full installationpip install hezar[nlp] # For NLPpip install hezar[vision] # For computer vision modelspip install hezar[audio] # For audio and speechpip install hezar[embeddings] # For word embedding models
You can also install the latest version from the source:
git clone https://github.com/hezarai/hezar.gitpip install ./hezar
Explore Hezar to learn more on thedocs page or explore the key concepts:
There's a bunch of ready to use trained models for different tasks on the Hub!
🤗Hugging Face Hub Page:https://huggingface.co/hezarai
Let's walk you through some examples!
- Text Classification (sentiment analysis, categorization, etc)
fromhezar.modelsimportModelexample= ["هزار، کتابخانهای کامل برای به کارگیری آسان هوش مصنوعی"]model=Model.load("hezarai/bert-fa-sentiment-dksf")outputs=model.predict(example)print(outputs)
[[{'label': 'positive', 'score': 0.812910258769989}]]
- Sequence Labeling (POS, NER, etc.)
fromhezar.modelsimportModelpos_model=Model.load("hezarai/bert-fa-pos-lscp-500k")# Part-of-speechner_model=Model.load("hezarai/bert-fa-ner-arman")# Named entity recognitioninputs= ["شرکت هوش مصنوعی هزار"]pos_outputs=pos_model.predict(inputs)ner_outputs=ner_model.predict(inputs)print(f"POS:{pos_outputs}")print(f"NER:{ner_outputs}")
POS: [[{'token': 'شرکت', 'label': 'Ne'}, {'token': 'هوش', 'label': 'Ne'}, {'token': 'مصنوعی', 'label': 'AJe'}, {'token': 'هزار', 'label': 'NUM'}]]NER: [[{'token': 'شرکت', 'label': 'B-org'}, {'token': 'هوش', 'label': 'I-org'}, {'token': 'مصنوعی', 'label': 'I-org'}, {'token': 'هزار', 'label': 'I-org'}]]
- Mask Filling
fromhezar.modelsimportModelmodel=Model.load("hezarai/roberta-fa-mask-filling")inputs= ["سلام بچه ها حالتون <mask>"]outputs=model.predict(inputs,top_k=1)print(outputs)
[[{'token': 'چطوره', 'sequence': 'سلام بچه ها حالتون چطوره', 'token_id': 34505, 'score': 0.2230483442544937}]]
- Speech Recognition
fromhezar.modelsimportModelmodel=Model.load("hezarai/whisper-small-fa")transcripts=model.predict("examples/assets/speech_example.mp3")print(transcripts)
[{'text': 'و این تنها محدود به محیط کار نیست'}]
- Text Detection (Pre-OCR)
fromhezar.modelsimportModelfromhezar.utilsimportload_image,draw_boxes,show_imagemodel=Model.load("hezarai/CRAFT")image=load_image("../assets/text_detection_example.png")outputs=model.predict(image)result_image=draw_boxes(image,outputs[0]["boxes"])show_image(result_image,"result")
- Image to Text (OCR)
fromhezar.modelsimportModel# OCR with CRNNmodel=Model.load("hezarai/crnn-fa-printed-96-long")texts=model.predict("examples/assets/ocr_example.jpg")print(f"CRNN Output:{texts}")
CRNN Output: [{'text': 'چه میشه کرد، باید صبر کنیم'}]
- Image to Text (License Plate Recognition)
fromhezar.modelsimportModelmodel=Model.load("hezarai/crnn-fa-license-plate-recognition-v2")plate_text=model.predict("assets/license_plate_ocr_example.jpg")print(plate_text)# Persian text of mixed numbers and characters might not show correctly in the console
[{'text': '۵۷س۷۷۹۷۷'}]
- Image to Text (Image Captioning)
fromhezar.modelsimportModelmodel=Model.load("hezarai/vit-roberta-fa-image-captioning-flickr30k")texts=model.predict("examples/assets/image_captioning_example.jpg")print(texts)
[{'text': 'سگی با توپ تنیس در دهانش می دود.'}]
We constantly keep working on adding and training new models and this section will hopefully be expanding over time ;)
- FastText
fromhezar.embeddingsimportEmbeddingfasttext=Embedding.load("hezarai/fasttext-fa-300")most_similar=fasttext.most_similar("هزار")print(most_similar)
[{'score': 0.7579, 'word': 'میلیون'}, {'score': 0.6943, 'word': '21هزار'}, {'score': 0.6861, 'word': 'میلیارد'}, {'score': 0.6825, 'word': '26هزار'}, {'score': 0.6803, 'word': '٣هزار'}]
- Word2Vec (Skip-gram)
fromhezar.embeddingsimportEmbeddingword2vec=Embedding.load("hezarai/word2vec-skipgram-fa-wikipedia")most_similar=word2vec.most_similar("هزار")print(most_similar)
[{'score': 0.7885, 'word': 'چهارهزار'}, {'score': 0.7788, 'word': '۱۰هزار'}, {'score': 0.7727, 'word': 'دویست'}, {'score': 0.7679, 'word': 'میلیون'}, {'score': 0.7602, 'word': 'پانصد'}]
- Word2Vec (CBOW)
fromhezar.embeddingsimportEmbeddingword2vec=Embedding.load("hezarai/word2vec-cbow-fa-wikipedia")most_similar=word2vec.most_similar("هزار")print(most_similar)
[{'score': 0.7407, 'word': 'دویست'}, {'score': 0.7400, 'word': 'میلیون'}, {'score': 0.7326, 'word': 'صد'}, {'score': 0.7276, 'word': 'پانصد'}, {'score': 0.7011, 'word': 'سیصد'}]
For a full guide on the embeddings module, see theembeddings tutorial.
You can load any of the datasets on theHub like below:
fromhezar.dataimportDataset# The `preprocessor` depends on what you want to do exactly later on. Below are just examples.sentiment_dataset=Dataset.load("hezarai/sentiment-dksf",preprocessor="hezarai/bert-base-fa")# A TextClassificationDataset instancelscp_dataset=Dataset.load("hezarai/lscp-pos-500k",preprocessor="hezarai/bert-base-fa")# A SequenceLabelingDataset instancexlsum_dataset=Dataset.load("hezarai/xlsum-fa",preprocessor="hezarai/t5-base-fa")# A TextSummarizationDataset instancealpr_ocr_dataset=Dataset.load("hezarai/persian-license-plate-v1",preprocessor="hezarai/crnn-fa-printed-96-long")# An OCRDataset instanceflickr30k_dataset=Dataset.load("hezarai/flickr30k-fa",preprocessor="hezarai/vit-roberta-fa-base")# An ImageCaptioningDataset instancecommonvoice_dataset=Dataset.load("hezarai/common-voice-13-fa",preprocessor="hezarai/whisper-small-fa")# A SpeechRecognitionDataset instance...
The returned dataset objects fromload()
are PyTorch Dataset wrappers for specific tasks and can be used by a data loader out-of-the-box!
You can also load Hezar's datasets using 🤗Datasets:
fromdatasetsimportload_datasetdataset=load_dataset("hezarai/sentiment-dksf")
For a full guide on Hezar's datasets, see thedatasets tutorial.
Hezar makes it super easy to train models using out-of-the-box models and datasets provided in the library.
fromhezar.modelsimportBertSequenceLabeling,BertSequenceLabelingConfigfromhezar.dataimportDatasetfromhezar.trainerimportTrainer,TrainerConfigfromhezar.preprocessorsimportPreprocessorbase_model_path="hezarai/bert-base-fa"dataset_path="hezarai/lscp-pos-500k"train_dataset=Dataset.load(dataset_path,split="train",tokenizer_path=base_model_path)eval_dataset=Dataset.load(dataset_path,split="test",tokenizer_path=base_model_path)model=BertSequenceLabeling(BertSequenceLabelingConfig(id2label=train_dataset.config.id2label))preprocessor=Preprocessor.load(base_model_path)train_config=TrainerConfig(output_dir="bert-fa-pos-lscp-500k",task="sequence_labeling",device="cuda",init_weights_from=base_model_path,batch_size=8,num_epochs=5,metrics=["seqeval"],)trainer=Trainer(config=train_config,model=model,train_dataset=train_dataset,eval_dataset=eval_dataset,data_collator=train_dataset.data_collator,preprocessor=preprocessor,)trainer.train()trainer.push_to_hub("bert-fa-pos-lscp-500k")# push model, config, preprocessor, trainer files and configs
You can actually go way deeper with the Trainer. See more detailshere.
Hezar hosts everything onthe HuggingFace Hub. When you use the.load()
method for a model, dataset, etc., it'sdownloaded and saved in the cache (at~/.cache/hezar
) so next time you try to load the same asset, it uses the cached versionwhich works even when offline. But if you want to export assets more explicitly, you can use the.save()
method to saveanything anywhere you want on a local path.
fromhezar.modelsimportModel# Load the online modelmodel=Model.load("hezarai/bert-fa-ner-arman")# Save the model locallysave_path="./weights/bert-fa-ner-arman"model.save(save_path)# The weights, config, preprocessors, etc. are saved at `./weights/bert-fa-ner-arman`# Now you can load the saved modellocal_model=Model.load(save_path)
Moreover, any class that has.load()
and.save()
can be treated the same way.
Hezar's primary focus is on providing ready to use models (implementations & pretrained weights) for different casual tasksnot by reinventing the wheel, but by being built on top ofPyTorch,🤗Transformers,🤗Tokenizers,🤗Datasets,Scikit-learn,Gensim, etc.Besides, it's deeply integrated with the🤗Hugging Face Hub andalmost any module e.g, models, datasets, preprocessors, trainers, etc. can be uploaded to or downloaded from the Hub!
More specifically, here's a simple summary of the core modules in Hezar:
- Models: Every model is a
hezar.models.Model
instance which is in fact, a PyTorchnn.Module
wrapper with extra features for saving, loading, exporting, etc. - Datasets: Every dataset is a
hezar.data.Dataset
instance which is a PyTorch Dataset implemented specifically for each task that can load the data files from the Hugging Face Hub. - Preprocessors: All preprocessors are preferably backed by a robust library like Tokenizers, pillow, etc.
- Embeddings: All embeddings are developed on top of Gensim and can be easily loaded from the Hub and used in just 2 lines of code!
- Trainer: Trainer is the base class for training almost any model in Hezar or even your own custom models backed by Hezar. The Trainer comes with a lot of features and is also exportable to the Hub!
- Metrics: Metrics are also another configurable and portable modules backed by Scikit-learn, seqeval, etc. and can be easily used in the trainers!
For more info, check thetutorials
Maintaining Hezar is no cakewalk with just a few of us on board. The concept might not be groundbreaking, but putting itinto action was a real challenge and that's why Hezar stands as the biggest Persian open source project of its kind!
Any contribution, big or small, would mean a lot to us. So, if you're interested, let's team up and makeHezar even better together! ❤️
Don't forget to check out our contribution guidelines inCONTRIBUTING.md before diving in. Your support is much appreciated!
We highly recommend to submit any issues or questions in the issues or discussions section but in case you need directcontact, here it is:
- arxyzan@gmail.com
- Telegram:@arxyzan
If you found this project useful in your work or research please cite it by using this BibTeX entry:
@misc{hezar2023,title ={Hezar: The all-in-one AI library for Persian},author ={Aryan Shekarlaban & Pooya Mohammadi Kazaj},publisher ={GitHub},howpublished ={\url{https://github.com/hezarai/hezar}},year ={2023}}
About
The all-in-one AI library for Persian, supporting a wide variety of tasks and modalities!