Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Build Low Code Automated Tensorflow explainable models in just 3 lines of code. Library created by: Hasan Rafiq -https://www.linkedin.com/in/sam04/

License

NotificationsYou must be signed in to change notification settings

hercules261188/auto-tensorflow

 
 

DownloadsGeneric badgeGeneric badgeexample workflowOpen issues

Auto Tensorflow - Mission:

Build Low Code Automated Tensorflow, What-IF explainable models in just 3 lines of code.

To make Deep Learning on Tensorflow absolutely easy for the masses with its low code framework and also increase trust on ML models through What-IF model explainability.

Under the hood:

Built on top of the powerfulTensorflow ecosystem tools likeTFX ,TF APIs andWhat-IF Tool , the library automatically does all the heavy lifting internally like EDA, schema discovery, feature engineering, HPT, model search etc. This empowers developers to focus only on building end user applications quickly without any knowledge of Tensorflow, ML or debugging. Built for handling large volume of data / BigData - using only TF scalable components. Moreover the models trained with auto-tensorflow can directly be deployed on any cloud like GCP / AWS / Azure.

Features:

  1. Build Classification / Regression models on CSV data
  2. Automated Schema Inference
  3. Automated Feature Engineering
    • Discretization
    • Scaling
    • Normalization
    • Text Embedding
    • Category encoding
  4. Automated Model build for mixed data types( Continuous, Categorical and Free Text )
  5. Automated Hyper-parameter tuning
  6. Automated GPU Distributed training
  7. Automated UI based What-IF analysis( Fairness, Feature Partial dependencies, What-IF )
  8. Control over complexity of model
  9. No dependency over Pandas / SKLearn
  10. Can handle dataset of any size - including multiple CSV files

Tutorials:

  1. Open In Colab - Auto Classification on CSV data
  2. Open In Colab - Auto Regression on CSV data

Setup:

  1. Install library
    • PIP(Recommended):pip install auto-tensorflow
    • Nightly:pip install git+https://github.com/rafiqhasan/auto-tensorflow.git
  2. Works best on UNIX/Linux/Debian/Google Colab/MacOS

Usage:

  1. Initialize TFAuto Engine
from auto_tensorflow.tfa import TFAutotfa = TFAuto(train_data_path='/content/train_data/', test_data_path='/content/test_data/', path_root='/content/tfauto')
  1. Step 1 - Automated EDA and Schema discovery
tfa.step_data_explore(viz=True) ##Viz=False for no visualization
  1. Step 2 - Automated ML model build and train
tfa.step_model_build(label_column = 'price', model_type='REGRESSION', model_complexity=1)
  1. Step 3 - Automated What-IF Tool launch
tfa.step_model_whatif()

API Arguments:

  • MethodTFAuto

    • train_data_path: Path where training data is stored
    • test_data_path: Path where Test / Eval data is stored
    • path_root: Directory for running TFAuto( Directory should NOT exist )
  • Methodstep_data_explore

    • viz: Is data visualization required ? - True or False( Default )
  • Methodstep_model_build

    • label_column: The feature to be used as Label
    • model_type: Either of 'REGRESSION'( Default ), 'CLASSIFICATION'
    • model_complexity:
      • 0 : Model with default hyper-parameters
      • 1 (Default): Model with automated hyper-parameter tuning
      • 2 : Complexity 1 + Advanced fine-tuning of Text layers

Current limitations:

There are a few limitations in the initial release but we are working day and night to resolve these andadd them as future features.

  1. Doesn't support Image / Audio data

Future roadmap:

  1. Add support for Timeseries / Audio / Image data
  2. Add feature to download full pipeline model Python code for advanced tweaking

Release History:

1.3.4 - 09/12/2022 -Release Notes

1.3.3 - 09/12/2022 -Release Notes

1.3.2 - 27/11/2021 -Release Notes

1.3.1 - 18/11/2021 -Release Notes

1.2.0 - 24/07/2021 -Release Notes

1.1.1 - 14/07/2021 -Release Notes

1.0.1 - 07/07/2021 -Release Notes

About

Build Low Code Automated Tensorflow explainable models in just 3 lines of code. Library created by: Hasan Rafiq -https://www.linkedin.com/in/sam04/

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python78.9%
  • Jupyter Notebook21.1%

[8]ページ先頭

©2009-2025 Movatter.jp