Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Calculate CDC/ATSDR Social Vulnerability Index

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
NotificationsYou must be signed in to change notification settings

heli-xu/findSVI

Repository files navigation

R-CMD-check

DOI

The goal of findSVI is to calculate regional CDC/ATSDR SocialVulnerability Index (SVI) (former site:www.atsdr.cdc.gov/placeandhealth/svi/index.html) at a geographic levelof interest using US census data from American Community Survey.

Overview

CDC/ATSDR releases SVI biannually at the counties/census tracts levelfor US or an individual state. findSVI aims to support more flexible andspecific SVI analysis with additional options for years (2012-2022) andgeographic levels (e.g., ZCTA/places, combining multiple states).

To find SVI for one or multiple year-state pair(s):

In most cases,find_svi() would be the easiest option. If you’d liketo include simple feature geometry or have more customized requests forcensus data retrieval (e.g., different geography level for eachyear-state pair, multiple states for one year), you can processindividual entry using the following:

  • get_census_data(): retrieves US census data (Census API keyrequired);
  • get_svi(): calculates SVI from the census data supplied.

Essentially,find_svi() is a wrapper function forget_census_data()andget_svi() that also supports iteration over 1-year-and-1-statepairs at the same geography level.

Installation

Install the findSVI package via CRAN:

install.packages("findSVI")

Alternatively, you can install the development version of findSVI fromGitHub with:

# install.packages("devtools")devtools::install_github("heli-xu/findSVI")

Usage

To find county-level SVI for New Jersey (NJ) for 2017, and forPennsylvania (PA) for 2018:

library(findSVI)library(dplyr)summarise_results<- find_svi(year= c(2017,2018),state= c("NJ","PA"),geography="county")summarise_results %>%   group_by(year,state) %>%   slice_head(n=5)
#> # A tibble: 10 × 8#> # Groups:   year, state [2]#>    GEOID RPL_theme1 RPL_theme2 RPL_theme3 RPL_theme4 RPL_themes  year state#>    <chr>      <dbl>      <dbl>      <dbl>      <dbl>      <dbl> <dbl> <chr>#>  1 34001      0.95      0.8        0.65        1          0.95   2017 NJ   #>  2 34003      0.2       0.3        0.55        0.45       0.25   2017 NJ   #>  3 34005      0.3       0.5        0.35        0.4        0.3    2017 NJ   #>  4 34007      0.7       0.9        0.55        0.6        0.75   2017 NJ   #>  5 34009      0.65      0.6        0.1         0.55       0.45   2017 NJ   #>  6 42001      0.212     0.242      0.697       0.227      0.182  2018 PA   #>  7 42003      0.136     0.0758     0.742       0.576      0.212  2018 PA   #>  8 42005      0.621     0.530      0.0152      0.167      0.227  2018 PA   #>  9 42007      0.182     0.409      0.530       0.348      0.197  2018 PA   #> 10 42009      0.712     0.606      0.0758      0.288      0.394  2018 PA

(First 5 rows of results for 2017-NJ and 2018-PA are shown.‘RPL_themes` indicates overall SVI, and ’RPL_theme1’ to ‘RPL_theme4’indicate theme-specific SVIs.)

To retrieve county-level census dataand then get SVI for PA for2020:

data<- get_census_data(2020,"county","PA")data[1:10,1:10]
#> # A tibble: 10 × 10#>    GEOID NAME        B06009_002E B06009_002M B09001_001E B09001_001M B11012_010E#>    <chr> <chr>             <dbl>       <dbl>       <dbl>       <dbl>       <dbl>#>  1 42001 Adams Coun…        7788         602       20663          NA        1237#>  2 42003 Allegheny …       45708        1713      228296          49       24311#>  3 42005 Armstrong …        3973         305       12516           9         912#>  4 42007 Beaver Cou…        7546         640       31915          NA        3380#>  5 42009 Bedford Co…        3996         317        9386          11         468#>  6 42011 Berks Coun…       36488        1356       93714          44        8812#>  7 42013 Blair Coun…        7292         679       24920          19        2552#>  8 42015 Bradford C…        4395         362       13358          NA         969#>  9 42017 Bucks Coun…       25651        1306      128008          53        8222#> 10 42019 Butler Cou…        6118         468       37577          NA        2121#> # ℹ 3 more variables: B11012_010M <dbl>, B11012_015E <dbl>, B11012_015M <dbl>

(First 10 rows and columns are shown, with the rest of columns beingother census variables for SVI calculation.)

result<- get_svi(2020,data)glimpse(result)
#> Rows: 67#> Columns: 63#> $ GEOID       <chr> "42001", "42003", "42005", "42007", "42009", "42011", "420…#> $ NAME        <chr> "Adams County, Pennsylvania", "Allegheny County, Pennsylva…#> $ E_TOTPOP    <dbl> 102627, 1218380, 65356, 164781, 48154, 419062, 122495, 607…#> $ E_HU        <dbl> 42525, 602416, 32852, 79587, 24405, 167514, 56960, 30691, …#> $ E_HH        <dbl> 39628, 545695, 28035, 72086, 19930, 156389, 51647, 25084, …#> $ E_POV150    <dbl> 13573, 212117, 13566, 28766, 10130, 77317, 27397, 13731, 5…#> $ E_UNEMP     <dbl> 2049, 32041, 1735, 4249, 1033, 12196, 2765, 1331, 14477, 4…#> $ E_HBURD     <dbl> 9088, 133524, 5719, 15764, 3952, 40982, 12146, 5520, 57197…#> $ E_NOHSDP    <dbl> 7788, 45708, 3973, 7546, 3996, 36488, 7292, 4395, 25651, 6…#> $ E_UNINSUR   <dbl> 5656, 46333, 2632, 6242, 3310, 25627, 6155, 3992, 25208, 6…#> $ E_AGE65     <dbl> 20884, 230745, 14496, 35351, 10950, 72293, 25372, 12948, 1…#> $ E_AGE17     <dbl> 20663, 228296, 12516, 31915, 9386, 93714, 24920, 13358, 12…#> $ E_DISABL    <dbl> 13860, 163671, 11431, 25878, 7797, 57961, 20278, 8731, 653…#> $ E_SNGPNT    <dbl> 1719, 29689, 1159, 4167, 681, 10507, 3096, 1397, 11396, 29…#> $ E_LIMENG    <dbl> 1318, 9553, 130, 606, 64, 16570, 388, 172, 11502, 449, 185…#> $ E_MINRTY    <dbl> 11624, 269795, 2096, 18205, 1672, 123611, 7120, 2733, 1089…#> $ E_MUNIT     <dbl> 821, 82729, 1180, 4563, 635, 11010, 3629, 1011, 25508, 660…#> $ E_MOBILE    <dbl> 2882, 4147, 3289, 3012, 3491, 4628, 4094, 4419, 4764, 6464…#> $ E_CROWD     <dbl> 468, 4697, 238, 693, 217, 1878, 451, 472, 2916, 489, 446, …#> $ E_NOVEH     <dbl> 1726, 72338, 2058, 5824, 961, 13331, 4216, 2086, 11711, 49…#> $ E_GROUPQ    <dbl> 4140, 33976, 795, 2933, 481, 13171, 3289, 736, 9462, 5592,…#> $ EP_POV150   <dbl> 13.8, 17.9, 21.0, 17.7, 21.4, 19.0, 22.9, 22.9, 9.7, 13.2,…#> $ EP_UNEMP    <dbl> 3.9, 4.9, 5.5, 5.1, 4.5, 5.6, 4.7, 4.7, 4.2, 4.6, 5.2, 10.…#> $ EP_HBURD    <dbl> 22.9, 24.5, 20.4, 21.9, 19.8, 26.2, 23.5, 22.0, 23.8, 19.4…#> $ EP_NOHSDP   <dbl> 10.8, 5.2, 8.2, 6.2, 11.3, 12.8, 8.3, 10.2, 5.7, 4.6, 8.0,…#> $ EP_UNINSUR  <dbl> 5.6, 3.8, 4.1, 3.8, 6.9, 6.2, 5.1, 6.6, 4.1, 3.3, 4.1, 3.2…#> $ EP_AGE65    <dbl> 20.3, 18.9, 22.2, 21.5, 22.7, 17.3, 20.7, 21.3, 18.7, 18.8…#> $ EP_AGE17    <dbl> 20.1, 18.7, 19.2, 19.4, 19.5, 22.4, 20.3, 22.0, 20.4, 20.0…#> $ EP_DISABL   <dbl> 13.7, 13.6, 17.6, 15.8, 16.3, 14.0, 16.8, 14.5, 10.5, 12.8…#> $ EP_SNGPNT   <dbl> 4.3, 5.4, 4.1, 5.8, 3.4, 6.7, 6.0, 5.6, 4.7, 3.8, 5.3, 8.1…#> $ EP_LIMENG   <dbl> 1.4, 0.8, 0.2, 0.4, 0.1, 4.2, 0.3, 0.3, 1.9, 0.3, 0.1, 0.0…#> $ EP_MINRTY   <dbl> 11.3, 22.1, 3.2, 11.0, 3.5, 29.5, 5.8, 4.5, 17.4, 5.6, 7.6…#> $ EP_MUNIT    <dbl> 1.9, 13.7, 3.6, 5.7, 2.6, 6.6, 6.4, 3.3, 10.1, 7.9, 5.7, 2…#> $ EP_MOBILE   <dbl> 6.8, 0.7, 10.0, 3.8, 14.3, 2.8, 7.2, 14.4, 1.9, 7.7, 4.7, …#> $ EP_CROWD    <dbl> 1.2, 0.9, 0.8, 1.0, 1.1, 1.2, 0.9, 1.9, 1.2, 0.6, 0.8, 1.2…#> $ EP_NOVEH    <dbl> 4.4, 13.3, 7.3, 8.1, 4.8, 8.5, 8.2, 8.3, 4.9, 6.4, 11.0, 9…#> $ EP_GROUPQ   <dbl> 4.0, 2.8, 1.2, 1.8, 1.0, 3.1, 2.7, 1.2, 1.5, 3.0, 5.1, 1.7…#> $ EPL_POV150  <dbl> 0.0758, 0.2727, 0.5303, 0.2424, 0.5606, 0.3788, 0.6818, 0.…#> $ EPL_UNEMP   <dbl> 0.1212, 0.4242, 0.6818, 0.5000, 0.2576, 0.6970, 0.3636, 0.…#> $ EPL_HBURD   <dbl> 0.5303, 0.6970, 0.2424, 0.4394, 0.1970, 0.8636, 0.5909, 0.…#> $ EPL_NOHSDP  <dbl> 0.7273, 0.0152, 0.2424, 0.1061, 0.8182, 0.9091, 0.2727, 0.…#> $ EPL_UNINSUR <dbl> 0.5152, 0.1061, 0.1364, 0.1061, 0.7424, 0.6667, 0.3939, 0.…#> $ EPL_AGE65   <dbl> 0.4848, 0.2727, 0.7879, 0.7121, 0.8788, 0.0909, 0.5606, 0.…#> $ EPL_AGE17   <dbl> 0.5909, 0.1970, 0.2576, 0.3333, 0.3939, 0.9091, 0.6212, 0.…#> $ EPL_DISABL  <dbl> 0.2576, 0.2273, 0.7727, 0.5000, 0.5909, 0.3333, 0.6667, 0.…#> $ EPL_SNGPNT  <dbl> 0.2273, 0.6364, 0.1515, 0.7424, 0.0455, 0.8636, 0.7879, 0.…#> $ EPL_LIMENG  <dbl> 0.7576, 0.6515, 0.0909, 0.2879, 0.0303, 0.9697, 0.1667, 0.…#> $ EPL_MINRTY  <dbl> 0.6515, 0.8636, 0.0303, 0.6364, 0.0455, 0.9242, 0.2879, 0.…#> $ EPL_MUNIT   <dbl> 0.1515, 0.9545, 0.4242, 0.6970, 0.1970, 0.7727, 0.7576, 0.…#> $ EPL_MOBILE  <dbl> 0.4394, 0.0303, 0.6818, 0.2121, 0.9091, 0.1515, 0.5000, 0.…#> $ EPL_CROWD   <dbl> 0.4091, 0.1818, 0.0909, 0.2576, 0.3333, 0.4091, 0.1818, 0.…#> $ EPL_NOVEH   <dbl> 0.0000, 0.9848, 0.4545, 0.5909, 0.0455, 0.6818, 0.6061, 0.…#> $ EPL_GROUPQ  <dbl> 0.6667, 0.4697, 0.0758, 0.2879, 0.0455, 0.5455, 0.4394, 0.…#> $ SPL_theme1  <dbl> 1.9698, 1.5152, 1.8333, 1.3940, 2.5758, 3.5152, 2.3029, 2.…#> $ SPL_theme2  <dbl> 2.3182, 1.9849, 2.0606, 2.5757, 1.9394, 3.1666, 2.8031, 2.…#> $ SPL_theme3  <dbl> 0.6515, 0.8636, 0.0303, 0.6364, 0.0455, 0.9242, 0.2879, 0.…#> $ SPL_theme4  <dbl> 1.6667, 2.6211, 1.7272, 2.0455, 1.5304, 2.5606, 2.4849, 2.…#> $ RPL_theme1  <dbl> 0.2424, 0.1667, 0.1970, 0.1364, 0.5455, 0.9242, 0.3636, 0.…#> $ RPL_theme2  <dbl> 0.3788, 0.2121, 0.2273, 0.5758, 0.1667, 0.9091, 0.6970, 0.…#> $ RPL_theme3  <dbl> 0.6515, 0.8636, 0.0303, 0.6364, 0.0455, 0.9242, 0.2879, 0.…#> $ RPL_theme4  <dbl> 0.1212, 0.5606, 0.1515, 0.2576, 0.0455, 0.5152, 0.4848, 0.…#> $ SPL_themes  <dbl> 6.6062, 6.9848, 5.6514, 6.6516, 6.0911, 10.1666, 7.8788, 8…#> $ RPL_themes  <dbl> 0.2273, 0.2879, 0.0909, 0.2424, 0.1667, 0.9545, 0.5152, 0.…

To find SVI for custom geographic boundaries:

cz_svi<- find_svi_x(year=2020,geography="county",xwalk=cty_cz_2020_xwalk#county-commuting zone crosswalk)

…wherexwalk is supplied by users to define the relationship between aCensus geography (‘GEOID’) and the custom geographic level (‘GEOID2’).The Census geography should be fully nested in the custom geographiclevel of interest. As an example, first 10 rows of the county-commutingzone crosswalk are shown below:

cty_cz_2020_xwalk %>% head(10)#>    GEOID GEOID2#> 1  01069      3#> 2  01023      9#> 3  01005      3#> 4  01107      4#> 5  01033     10#> 6  04012     37#> 7  04001     32#> 8  05081     55#> 9  05121     46#> 10 06037     37

With the crosswalk, county-level census data are aggregated to thecommuting zone-level, and SVI is calculated for each commuting zone.Below shows the overall and theme-specific SVI of the first 10 rows,with GEOIDs representing the commuting zone IDs.

cz_svi %>%   select(GEOID, contains("RPL")) %>%  head(10)
#> # A tibble: 10 × 6#>    GEOID RPL_theme1 RPL_theme2 RPL_theme3 RPL_theme4 RPL_themes#>    <int>      <dbl>      <dbl>      <dbl>      <dbl>      <dbl>#>  1     1      0.778      0.833      0.885     0.730       0.826#>  2     2      0.734      0.436      0.698     0.388       0.625#>  3     3      0.871      0.892      0.703     0.570       0.833#>  4     4      0.881      0.498      0.838     0.947       0.876#>  5     5      0.560      0.675      0.684     0.333       0.606#>  6     6      0.799      0.813      0.605     0.302       0.720#>  7     7      0.821      0.680      0.802     0.875       0.842#>  8     8      0.694      0.888      0.438     0.0842      0.570#>  9     9      0.899      0.969      0.838     0.918       0.962#> 10    10      0.357      0.507      0.589     0.134       0.335

About

Calculate CDC/ATSDR Social Vulnerability Index

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp