Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commitdf5242e

Browse files
committed
fix bug on text generator code
1 parent37824b6 commitdf5242e

File tree

2 files changed

+305
-2
lines changed

2 files changed

+305
-2
lines changed
Lines changed: 300 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,300 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type":"code",
5+
"execution_count":null,
6+
"source": [
7+
"import tensorflow as tf\r\n",
8+
"import numpy as np\r\n",
9+
"import os\r\n",
10+
"import pickle\r\n",
11+
"\r\n",
12+
"SEQUENCE_LENGTH = 50\r\n",
13+
"EMBEDDING_DIM = 200\r\n",
14+
"BATCH_SIZE = 128\r\n",
15+
"FILE_PATH =\"data/python_code.py\"\r\n",
16+
"BASENAME = os.path.basename(FILE_PATH) +\"-lower\"\r\n",
17+
"\r\n",
18+
"text = open(FILE_PATH).read()\r\n",
19+
"# comment this if you want to use uppercase letters\r\n",
20+
"text = text.lower()\r\n",
21+
"n_chars = len(text)\r\n",
22+
"vocab = ''.join(sorted(set(text)))\r\n",
23+
"print(\"vocab:\", vocab)\r\n",
24+
"n_unique_chars = len(vocab)\r\n",
25+
"print(\"Number of characters:\", n_chars)\r\n",
26+
"print(\"Number of unique characters:\", n_unique_chars)"
27+
],
28+
"outputs": [],
29+
"metadata": {}
30+
},
31+
{
32+
"cell_type":"code",
33+
"execution_count":null,
34+
"source": [
35+
"# dictionary that converts characters to integers\r\n",
36+
"char2int = {c: i for i, c in enumerate(vocab)}\r\n",
37+
"# dictionary that converts integers to characters\r\n",
38+
"int2char = {i: c for i, c in enumerate(vocab)}\r\n",
39+
"\r\n",
40+
"# save these dictionaries for later generation\r\n",
41+
"pickle.dump(char2int, open(f\"{BASENAME}-char2int.pickle\",\"wb\"))\r\n",
42+
"pickle.dump(int2char, open(f\"{BASENAME}-int2char.pickle\",\"wb\"))"
43+
],
44+
"outputs": [],
45+
"metadata": {}
46+
},
47+
{
48+
"cell_type":"code",
49+
"execution_count":null,
50+
"source": [
51+
"encoded_text = np.array([char2int[c] for c in text])"
52+
],
53+
"outputs": [],
54+
"metadata": {}
55+
},
56+
{
57+
"cell_type":"code",
58+
"execution_count":null,
59+
"source": [
60+
"char_dataset = tf.data.Dataset.from_tensor_slices(encoded_text)\r\n",
61+
"for element in char_dataset.take(5):\r\n",
62+
" print(element.numpy())"
63+
],
64+
"outputs": [],
65+
"metadata": {}
66+
},
67+
{
68+
"cell_type":"code",
69+
"execution_count":null,
70+
"source": [
71+
"for element in char_dataset.batch(SEQUENCE_LENGTH+1).shuffle(1024).take(2):\r\n",
72+
" print(''.join([int2char[c] for c in element.numpy()]))"
73+
],
74+
"outputs": [],
75+
"metadata": {}
76+
},
77+
{
78+
"cell_type":"code",
79+
"execution_count":null,
80+
"source": [
81+
"#help(tf.one_hot)\r\n",
82+
"#help(char_dataset.window)\r\n",
83+
"windows = char_dataset.window(SEQUENCE_LENGTH+1, shift=1, drop_remainder=True)\r\n",
84+
"sequences = windows.flat_map(lambda window: window.batch(SEQUENCE_LENGTH+1))\r\n",
85+
"dataset = sequences.map(lambda x: (x[:-1], x[-1]))\r\n",
86+
"for input_, target in dataset.take(10):\r\n",
87+
" print(input_.numpy().shape)\r\n",
88+
" print(target.numpy().shape)\r\n",
89+
" print(''.join([int2char[c] for c in input_.numpy()]), int2char[target.numpy()])\r\n",
90+
" print(\"=\"*50)"
91+
],
92+
"outputs": [],
93+
"metadata": {}
94+
},
95+
{
96+
"cell_type":"code",
97+
"execution_count":null,
98+
"source": [
99+
"sequences2 = char_dataset.batch(2*SEQUENCE_LENGTH+1, drop_remainder=True)\r\n",
100+
"\r\n",
101+
"def split_sample(sample):\r\n",
102+
" ds = tf.data.Dataset.from_tensors((sample[:SEQUENCE_LENGTH], sample[SEQUENCE_LENGTH]))\r\n",
103+
" for i in range(1, (len(sample)-1) // 2):\r\n",
104+
" input_ = sample[i:i+SEQUENCE_LENGTH]\r\n",
105+
" target = sample[i+SEQUENCE_LENGTH]\r\n",
106+
" other_ds = tf.data.Dataset.from_tensors((input_, target))\r\n",
107+
" ds = ds.concatenate(other_ds)\r\n",
108+
" return ds\r\n",
109+
"\r\n",
110+
"\r\n",
111+
"dataset2 = sequences2.flat_map(split_sample)\r\n",
112+
"for element in dataset2.take(10):\r\n",
113+
" print(element[0].shape, element[1].shape)\r\n",
114+
" print(''.join([int2char[c] for c in element[0].numpy()]), int2char[element[1].numpy()])"
115+
],
116+
"outputs": [],
117+
"metadata": {
118+
"tags": [
119+
"outputPrepend",
120+
"outputPrepend",
121+
"outputPrepend",
122+
"outputPrepend"
123+
]
124+
}
125+
},
126+
{
127+
"cell_type":"code",
128+
"execution_count":null,
129+
"source": [
130+
"for element1, element2 in zip(dataset.take(5), dataset2.take(5)):\r\n",
131+
" print(element1[0].numpy() == element2[0].numpy())\r\n",
132+
""
133+
],
134+
"outputs": [],
135+
"metadata": {}
136+
},
137+
{
138+
"cell_type":"code",
139+
"execution_count":null,
140+
"source": [
141+
"def one_hot_samples(input_, target):\r\n",
142+
" return tf.one_hot(input_, len(vocab)), tf.one_hot(target, len(vocab))\r\n",
143+
"# return input_, tf.one_hot(target, len(vocab))\r\n",
144+
"\r\n",
145+
"dataset = dataset.map(one_hot_samples)\r\n",
146+
"dataset2 = dataset2.map(one_hot_samples)\r\n",
147+
"for element in dataset.take(10):\r\n",
148+
" print(element[0].shape, element[1].shape)"
149+
],
150+
"outputs": [],
151+
"metadata": {}
152+
},
153+
{
154+
"cell_type":"code",
155+
"execution_count":null,
156+
"source": [
157+
"ds = dataset.shuffle(1024).batch(BATCH_SIZE, drop_remainder=True).cache().prefetch(1).repeat()\r\n",
158+
"ds2 = dataset2.shuffle(1024).batch(BATCH_SIZE, drop_remainder=True).cache().prefetch(1).repeat()"
159+
],
160+
"outputs": [],
161+
"metadata": {}
162+
},
163+
{
164+
"cell_type":"code",
165+
"execution_count":null,
166+
"source": [
167+
"def create_model(vocab_size, embedding_dim, rnn_units, batch_size):\r\n",
168+
" model = tf.keras.Sequential()\r\n",
169+
" # model.add(tf.keras.layers.Embedding(vocab_size, embedding_dim, input_shape=(SEQUENCE_LENGTH,)))\r\n",
170+
" model.add(tf.keras.layers.LSTM(rnn_units, input_shape=(SEQUENCE_LENGTH, len(vocab)), return_sequences=True))\r\n",
171+
" model.add(tf.keras.layers.Dropout(0.3))\r\n",
172+
" model.add(tf.keras.layers.LSTM(rnn_units)),\r\n",
173+
" model.add(tf.keras.layers.Dropout(0.3))\r\n",
174+
" model.add(tf.keras.layers.Dense(vocab_size, activation=\"softmax\"))\r\n",
175+
" return model"
176+
],
177+
"outputs": [],
178+
"metadata": {}
179+
},
180+
{
181+
"cell_type":"code",
182+
"execution_count":null,
183+
"source": [
184+
"model = create_model(len(vocab), embedding_dim=EMBEDDING_DIM, rnn_units=128, batch_size=BATCH_SIZE)\r\n",
185+
"model.summary()\r\n",
186+
"model.compile(optimizer=\"adam\", loss=\"categorical_crossentropy\", metrics=[\"accuracy\"])"
187+
],
188+
"outputs": [],
189+
"metadata": {}
190+
},
191+
{
192+
"cell_type":"code",
193+
"execution_count":null,
194+
"source": [
195+
"EPOCHS = 5\r\n",
196+
"history = model.fit(ds2, steps_per_epoch=(len(encoded_text) - SEQUENCE_LENGTH ) // BATCH_SIZE, epochs=EPOCHS)"
197+
],
198+
"outputs": [],
199+
"metadata": {}
200+
},
201+
{
202+
"cell_type":"code",
203+
"execution_count":null,
204+
"source": [
205+
"# save the model\r\n",
206+
"model_path = f\"results/{BASENAME}-{SEQUENCE_LENGTH}-NOEMBEDDING-moredata.h5\"\r\n",
207+
"model.save(model_path)\r\n",
208+
"# model.load_weights(model_path)"
209+
],
210+
"outputs": [],
211+
"metadata": {}
212+
},
213+
{
214+
"cell_type":"code",
215+
"execution_count":null,
216+
"source": [
217+
"seed =\"\"\"You can be a\"\"\".lower()\r\n",
218+
"s = seed\r\n",
219+
"# generate 400 characters\r\n",
220+
"generated =\"\"\r\n",
221+
"for i in range(200):\r\n",
222+
" # make the input sequence\r\n",
223+
" X = np.zeros((1, SEQUENCE_LENGTH, len(vocab)))\r\n",
224+
" # X = np.zeros((1, SEQUENCE_LENGTH))\r\n",
225+
" for t, char in enumerate(seed):\r\n",
226+
" X[0, (SEQUENCE_LENGTH - len(seed)) + t, char2int[char]] = 1\r\n",
227+
" # predict the next character\r\n",
228+
" predicted = model.predict(X, verbose=0)[0]\r\n",
229+
" # print(predicted)\r\n",
230+
" # converting the vector to an integer\r\n",
231+
" next_index = np.argmax(predicted)\r\n",
232+
"# next_index = np.squeeze(np.round(predicted))\r\n",
233+
" # converting the integer to a character\r\n",
234+
"# print(next_index)\r\n",
235+
" next_char = int2char[next_index]\r\n",
236+
" # add the character to results\r\n",
237+
" generated += next_char\r\n",
238+
" # shift seed and the predicted character\r\n",
239+
" seed = seed[1:] + next_char\r\n",
240+
"\r\n",
241+
"print(\"Generated text:\")\r\n",
242+
"print(s + generated)"
243+
],
244+
"outputs": [],
245+
"metadata": {}
246+
},
247+
{
248+
"cell_type":"code",
249+
"execution_count":null,
250+
"source": [
251+
"char2int\r\n"
252+
],
253+
"outputs": [],
254+
"metadata": {}
255+
},
256+
{
257+
"cell_type":"code",
258+
"execution_count":null,
259+
"source": [],
260+
"outputs": [],
261+
"metadata": {}
262+
},
263+
{
264+
"cell_type":"code",
265+
"execution_count":null,
266+
"source": [],
267+
"outputs": [],
268+
"metadata": {}
269+
}
270+
],
271+
"metadata": {
272+
"file_extension":".py",
273+
"kernelspec": {
274+
"name":"python3",
275+
"display_name":"Python 3.8.7 64-bit"
276+
},
277+
"language_info": {
278+
"codemirror_mode": {
279+
"name":"ipython",
280+
"version":3
281+
},
282+
"file_extension":".py",
283+
"mimetype":"text/x-python",
284+
"name":"python",
285+
"nbconvert_exporter":"python",
286+
"pygments_lexer":"ipython3",
287+
"version":"3.8.7"
288+
},
289+
"mimetype":"text/x-python",
290+
"name":"python",
291+
"npconvert_exporter":"python",
292+
"pygments_lexer":"ipython3",
293+
"version":3,
294+
"interpreter": {
295+
"hash":"777490da48e046e3b512f0b24bf037db286a787493a11bf82a9e0f2cbf21bb67"
296+
}
297+
},
298+
"nbformat":4,
299+
"nbformat_minor":4
300+
}

‎machine-learning/nlp/text-generator/train.py

Lines changed: 5 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -113,7 +113,10 @@ def one_hot_samples(input_, target):
113113
Dense(n_unique_chars,activation="softmax"),
114114
])
115115

116-
model.load_weights(f"results/{BASENAME}-{sequence_length}.h5")
116+
# define the model path
117+
model_weights_path=f"results/{BASENAME}-{sequence_length}.h5"
118+
# if os.path.isfile(model_weights_path):
119+
# model.load_weights(model_weights_path)
117120

118121
model.summary()
119122
model.compile(loss="categorical_crossentropy",optimizer="adam",metrics=["accuracy"])
@@ -126,4 +129,4 @@ def one_hot_samples(input_, target):
126129
# train the model
127130
model.fit(ds,steps_per_epoch=(len(encoded_text)-sequence_length)//BATCH_SIZE,epochs=EPOCHS)
128131
# save the model
129-
model.save(f"results/{BASENAME}-{sequence_length}.h5")
132+
model.save(model_weights_path)

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp