Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

PyGraphistry is a Python library to quickly load, shape, embed, and explore big graphs with the GPU-accelerated Graphistry visual graph analyzer

License

NotificationsYou must be signed in to change notification settings

graphistry/pygraphistry

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2,320 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Build StatusCodeQLDocumentation StatusLatest VersionLatest VersionLicensePyPI - Downloads

Uptime Robot statusTwitter Follow

Demo: Interactive visualization of 80,000+ Facebook friendships (source data)

PyGraphistry is an open source Python library for data scientists and developers to leverage the power of graph visualization, analytics, AI, including with native GPU acceleration:

  • Python dataframe-native graph processing: Quickly ingest & prepare data in many formats, shapes, and scales as graphs. Use tools like Pandas, Spark,RAPIDS (GPU), andApache Arrow.

  • Integrations: Connect to graph databases, data platforms, Python tools, and more.

    CategoryConnector Tutorials
    Data Platforms, SQL & LogsDatabricksSplunkPostgreSQLAzure Data Explorer (Kusto)Google Cloud Spanner
    Graph DatabasesNeo4jAmazon NeptuneTigerGraphArangoDBMemgraph
    Python Tools & LibrariesCSVPandasApache ArrowNVIDIA RAPIDSNetworkXGraphviz

    View all connectors →

  • Prototype locally and deploy remotely: Prototype from notebooks like Jupyter and Databricks using local CPUs & GPUs, and then power production dashboards & pipelines with Graphistry Hub and your own self-hosted servers.

  • Query graphs with GFQL: Use GFQL, the first dataframe-native graph query language, to ask relationship questions that are difficult for tabular tools and without requiring a database.

  • graphistry[ai]: Call streamlined graph ML & AI methods to benefit from clustering, UMAP embeddings, graph neural networks, automatic feature engineering, and more.

  • Visualize & explore large graphs: In just a few minutes, create stunning interactive visualizations with millions of edges and many point-and-click built-ins like drilldowns, timebars, and filtering. When ready, customize with Python, JavaScript, and REST APIs.

  • Columnar & GPU acceleration: CPU-mode ingestion and wrangling is fast due to native use of Apache Arrow and columnar analytics, and the optional RAPIDS-based GPU mode delivers 100X+ speedups.

From global 10 banks, manufacturers, news agencies, and government agencies, to startups, game companies, scientists, biotechs, and NGOs, many teams are tackling their graph workloads with Graphistry.

Gallery

Thenotebook demo gallery shares many more live visualizations, demos, and integration examples

Twitter Botnet
Edit Wars on Wikipedia
(data)
100,000 Bitcoin Transactions
Port Scan Attack
Protein Interactions
(data)
Programming Languages
(data)

Install

Common configurations:

  • Minimal core

    Includes: The GFQL dataframe-native graph query language, built-in layouts, Graphistry visualization server client

    pipinstallgraphistry

    Does not includegraphistry[ai], plugins

  • No dependencies and user-level

    pipinstall--no-deps--usergraphistry
  • GPU acceleration - Optional

    Local GPU: InstallRAPIDS and/or deploy a GPU-readyGraphistry server

    Remote GPU: Use theremote endpoints.

For further options, see theinstallation guides

Visualization quickstart

Quickly go from raw data to a styled and interactive Graphistry graph visualization:

importgraphistryimportpandasaspd# Raw data as Pandas CPU dataframes, cuDF GPU dataframes, Spark, ...df=pd.DataFrame({'src': ['Alice','Bob','Carol'],'dst': ['Bob','Carol','Alice'],'friendship': [0.3,0.95,0.8]})# Bindg1=graphistry.edges(df,'src','dst')# Override styling defaultsg1_styled=g1.encode_edge_color('friendship', ['blue','red'],as_continuous=True)# Connect: Free GPU accounts and self-hosting @ graphistry.com/get-startedgraphistry.register(api=3,username='your_username',password='your_password')# Upload for GPU server visualization sessiong1_styled.plot()

Explore10 Minutes to Graphistry Visualization for more visualization examples and options

PyGraphistry[AI] & GFQL quickstart - CPU & GPU

CPU graph pipeline combining graph ML, AI, mining, and visualization:

fromgraphistryimportn,e,e_forward,e_reverse# Graph analyticsg2=g1.compute_igraph('pagerank')assert'pagerank'ing2._nodes.columns# Graph ML/AIg3=g2.umap()assert ('x'ing3._nodes.columns)and ('y'ing3._nodes.columns)# Graph querying with GFQLg4=g3.chain([n(query='pagerank > 0.1'),e_forward(),n(query='pagerank > 0.1')])assert (g4._nodes.pagerank>0.1).all()# Upload for GPU server visualization sessiong4.plot()

Theautomatic GPU modes require almost no code changes:

importcudffromgraphistryimportn,e,e_forward,e_reverse# Modified -- Rebind data as a GPU dataframe and swap in a GPU plugin callg1_gpu=g1.edges(cudf.from_pandas(df))g2=g1_gpu.compute_cugraph('pagerank')# Unmodified -- Automatic GPU mode for all ML, AI, GFQL queries, & visualization APIsg3=g2.umap()g4=g3.chain([n(query='pagerank > 0.1'),e_forward(),n(query='pagerank > 0.1')])g4.plot()

Explore10 Minutes to PyGraphistry for a wider variety of graph processing.

PyGraphistry documentation

Graphistry ecosystem

Community and support

Contribute

SeeCONTRIBUTING andDEVELOP for participating in PyGraphistry development, or reach out to our team

About

PyGraphistry is a Python library to quickly load, shape, embed, and explore big graphs with the GPU-accelerated Graphistry visual graph analyzer

Topics

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Contributors41

Languages


[8]ページ先頭

©2009-2026 Movatter.jp