Uh oh!
There was an error while loading.Please reload this page.
- Notifications
You must be signed in to change notification settings - Fork739
Description
Given an n x n grid containing only values 0 and 1, where 0 represents water and 1 represents land, find a water cell such that its distance to the nearest land cell is maximized, and return the distance. If no land or water exists in the grid, return -1.
The distance used in this problem is the Manhattan distance: the distance between two cells (x0, y0) and (x1, y1) is |x0 - x1| + |y0 - y1|.
Example 1:
Input: grid = [[1,0,1],[0,0,0],[1,0,1]]Output: 2Explanation: The cell (1, 1) is as far as possible from all the land with distance 2.Example 2:
Input: grid = [[1,0,0],[0,0,0],[0,0,0]]Output: 4Explanation: The cell (2, 2) is as far as possible from all the land with distance 4.Constraints:
n == grid.lengthn == grid[i].length1 <= n <= 100grid[i][j]is0or1
这道题给了一个只有0和1的二维数组,说是0表示水,1表示陆地,现在让找出一个0的位置,使得其离最近的1的距离最大,这里的距离用曼哈顿距离表示。这里最暴力的方法就是遍历每个0的位置,对于每个遍历到的0,再遍历每个1的位置,计算它们的距离,找到最小的距离保存为该0位置的距离,然后在所有0位置的距离中找出最大的。这种方法不是很高效,目测无法通过 OJ,博主都没有尝试。其实这道题的比较好的解法是建立距离场,即每个大于1的数字表示该位置到任意一个1位置的最短距离,在之前那道Shortest Distance from All Buildings 就用过这种方法。建立距离场用 BFS 比较方便,因为其是一层一层往外扩散的遍历,这里需要注意的是要一次把所有1的位置都加入 queue 中一起遍历,而不是对每个1都进行 BFS,否则还是过不了 OJ。这里先把位置1都加入 queue,然后这里先做个剪枝,若位置1的个数为0,或者为 n^2,表示没有陆地,或者没有水,直接返回 -1。否则进行 while 循环,步数 step 加1,然后用 for 循环确保进行层序遍历,一定要将 q.size() 放到初始化中,因为其值可能改变。然后就是标准的 BFS 写法了,取队首元素,遍历其相邻四个结点,若没有越界且值为0,则将当前位置值更新为 step,然后将这个位置加入 queue 中继续遍历。循环退出后返回 step-1 即可,参见代码如下:
解法一:
class Solution {public: int maxDistance(vector<vector<int>>& grid) { int step = 0, n = grid.size(); vector<vector<int>> dirs{{-1, 0}, {0, 1}, {1, 0}, {0, -1}}; queue<vector<int>> q; for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { if (grid[i][j] == 0) continue; q.push(vector<int>{i, j}); } } if (q.size() == 0 || q.size() == n * n) return -1; while (!q.empty()) { ++step; for (int k = q.size(); k > 0; --k) { auto t = q.front(); q.pop(); for (auto dir : dirs) { int x = t[0] + dir[0], y = t[1] + dir[1]; if (x < 0 || x >= n || y < 0 || y >= n || grid[x][y] != 0) continue; grid[x][y] = step; q.push({x, y}); } } } return step - 1; }};我们也可以强行用 DFS 来做,这里对于每一个值为1的点都调用递归函数,更新跟其相连的所有0位置的距离,最终也能算出整个距离场,从而查找出最大的距离,参见代码如下:
解法二:
class Solution {public: int maxDistance(vector<vector<int>>& grid) { int res = -1, n = grid.size(); for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { if (grid[i][j] == 1) { grid[i][j] = 0; helper(grid, i, j); } } } for (int i = n - 1; i >= 0; --i) { for (int j = n - 1; j >= 0; --j) { if (grid[i][j] > 1) res = max(res, grid[i][j] - 1); } } return res; } void helper(vector<vector<int>>& grid, int i, int j, int dist = 1) { int n = grid.size(); if (i < 0 || j < 0 || i >= n || j >= n || (grid[i][j] != 0 && grid[i][j] <= dist)) return; grid[i][j] = dist; helper(grid, i - 1, j, dist + 1); helper(grid, i + 1, j, dist + 1); helper(grid, i, j - 1, dist + 1); helper(grid, i, j + 1, dist + 1); }};其实这道题的最优解法并不是 BFS 或者 DFS,而是下面这种两次扫描的方法,在之前那道01 Matrix 中就使用过。有点像动态规划的感觉,还是建立距离场,先从左上遍历到右下,遇到1的位置跳过,然后初始化0位置的值为 201(因为n不超过 100,所以距离不会超过 200),然后用左边和上边的值加1来更新当前位置的,注意避免越界。然后从右边再遍历到左上,还是遇到1的位置跳过,然后用右边和下边的值加1来更新当前位置的,注意避免越界,同时还要更新结果 res 的值。最终若 res 为 201,则返回 -1,否则返回 res-1,参见代码如下:
解法三:
class Solution {public: int maxDistance(vector<vector<int>>& grid) { int res = 0, n = grid.size(); for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { if (grid[i][j] == 1) continue; grid[i][j] = 201; if (i > 0) grid[i][j] = min(grid[i][j], grid[i - 1][j] + 1); if (j > 0) grid[i][j] = min(grid[i][j], grid[i][j - 1] + 1); } } for (int i = n - 1; i >= 0; --i) { for (int j = n - 1; j >= 0; --j) { if (grid[i][j] == 1) continue; if (i < n - 1) grid[i][j] = min(grid[i][j], grid[i + 1][j] + 1); if (j < n - 1) grid[i][j] = min(grid[i][j], grid[i][j + 1] + 1); res = max(res, grid[i][j]); } } return res == 201 ? -1 : res - 1; }};Github 同步地址:
类似题目:
Shortest Distance from All Buildings
参考资料: