- Notifications
You must be signed in to change notification settings - Fork20
License
googleapis/langchain-google-spanner-python
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
In order to use this library, you first need to go through the followingsteps:
- Select or create a Cloud Platform project.
- Enable billing for your project.
- Enable the Google Cloud Spanner API.
- Setup Authentication.
Install this library in avirtualenv using pip.virtualenv is a tool to create isolated Python environments. The basic problem it addresses isone of dependencies and versions, and indirectly permissions.
Withvirtualenv, it’s possible to install this library without needing system install permissions, and without clashing with the installed system dependencies.
Python >= 3.9
pip install virtualenvvirtualenv <your-env>source <your-env>/bin/activate<your-env>/bin/pip install langchain-google-spanner
pip install virtualenvvirtualenv <your-env><your-env>\Scripts\activate<your-env>\Scripts\pip.exe install langchain-google-spanner
Use a vector store to store embedded data and perform vector search.
fromlangchain_google_spannerimportSpannerVectorstorefromlangchain.embeddingsimportVertexAIEmbeddingsembeddings_service=VertexAIEmbeddings(model_name="textembedding-gecko@003")vectorstore=SpannerVectorStore(instance_id="my-instance",database_id="my-database",table_name="my-table",embeddings=embedding_service)
See the fullVector Store tutorial.
Use a document loader to load data as LangChainDocument
s.
fromlangchain_google_spannerimportSpannerLoaderloader=SpannerLoader(instance_id="my-instance",database_id="my-database",query="SELECT * from my_table_name" )docs=loader.lazy_load()
See the fullDocument Loader tutorial.
UseChatMessageHistory
to store messages and provide conversationhistory to LLMs.
fromlangchain_google_spannerimportSpannerChatMessageHistoryhistory=SpannerChatMessageHistory(instance_id="my-instance",database_id="my-database",table_name="my_table_name",session_id="my-session_id" )
See the fullChat Message History tutorial.
UseSpannerGraphStore
to store nodes and edges extracted from documents.
fromlangchain_google_spannerimportSpannerGraphStoregraph=SpannerGraphStore(instance_id="my-instance",database_id="my-database",graph_name="my_graph", )
See the fullSpanner Graph Store tutorial.
UseSpannerGraphQAChain
for question answering over a graph stored in Spanner Graph.
fromlangchain_google_spannerimportSpannerGraphStore,SpannerGraphQAChainfromlangchain_google_vertexaiimportChatVertexAIgraph=SpannerGraphStore(instance_id="my-instance",database_id="my-database",graph_name="my_graph",)llm=ChatVertexAI()chain=SpannerGraphQAChain.from_llm(llm,graph=graph,allow_dangerous_requests=True)chain.invoke("query=Where does Sarah's sibling live?")
See the fullSpanner Graph QA Chain tutorial.
UseSpannerGraphTextToGQLRetriever
to translate natural language question to GQL and query SpannerGraphStore.
fromlangchain_google_spannerimportSpannerGraphStore,SpannerGraphTextToGQLRetrieverfromlangchain_google_vertexaiimportChatVertexAIgraph=SpannerGraphStore(instance_id="my-instance",database_id="my-database",graph_name="my_graph",)llm=ChatVertexAI()retriever=SpannerGraphTextToGQLRetriever.from_params(graph_store=graph,llm=llm)retriever.invoke("Where does Elias Thorne's sibling live?")
UseSpannerGraphVectorContextRetriever
to perform vector search on embeddings that are stored in the nodes in a SpannerGraphStore. If expand_by_hops is provided, the nodes and edges at a distance upto the expand_by_hops from the nodes found in the vector search will also be returned.
fromlangchain_google_spannerimportSpannerGraphStore,SpannerGraphVectorContextRetrieverfromlangchain_google_vertexaiimportChatVertexAI,VertexAIEmbeddingsgraph=SpannerGraphStore(instance_id="my-instance",database_id="my-database",graph_name="my_graph",)embedding_service=VertexAIEmbeddings(model_name="text-embedding-004")retriever=SpannerGraphVectorContextRetriever.from_params(graph_store=graph,embedding_service=embedding_service,label_expr="Person",embeddings_column="embeddings",top_k=1,expand_by_hops=1, )retriever.invoke("Who lives in desert?")
Contributions to this library are always welcome and highly encouraged.
SeeCONTRIBUTING for more information how to get started.
Please note that this project is released with a Contributor Code of Conduct. By participating inthis project you agree to abide by its terms. SeeCode of Conduct for moreinformation.
Apache 2.0 - SeeLICENSEfor more information.
This is not an officially supported Google product.
- Approximate Nearest Neighbors (ANN) strategies are only supported for the GoogleSQL dialect
- ANN's ALTER VECTOR INDEX is not yet supported by [Google Cloud Spanner](https://cloud.google.com/spanner/docs/find-approximate-nearest-neighbors#limitations)
About
Resources
License
Code of conduct
Security policy
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Packages0
Uh oh!
There was an error while loading.Please reload this page.