|
| 1 | +library(LRTesteR) |
| 2 | +library(tidyverse) |
| 3 | +library(stringr) |
| 4 | + |
| 5 | +################ |
| 6 | +# Simulation settings |
| 7 | +################ |
| 8 | +compiler::enableJIT(3) |
| 9 | +B<-5000 |
| 10 | +N<-500 |
| 11 | + |
| 12 | +################ |
| 13 | +# Type I |
| 14 | +################ |
| 15 | +mus<- seq(-4,4,2) |
| 16 | +variances<- c(1,3,5) |
| 17 | + |
| 18 | +sim_results<- tibble() |
| 19 | +for (muinmus) { |
| 20 | +for (varianceinvariances) { |
| 21 | +for (altin c("two.sided","less","greater")) { |
| 22 | +stats<- vector(mode="numeric",length=B) |
| 23 | +pvalues<- vector(mode="numeric",length=B) |
| 24 | +alts<- vector(mode="character",length=B) |
| 25 | +CI_LBs<- vector(mode="numeric",length=B) |
| 26 | +CI_UBs<- vector(mode="numeric",length=B) |
| 27 | +testName<-"log_normal_mu_one_sample" |
| 28 | +for (iin1:B) { |
| 29 | + set.seed(i) |
| 30 | +x<- rlnorm(n=N,mean=mu,sd=variance^.5) |
| 31 | +test<- log_normal_mu_one_sample(x,mu,alt) |
| 32 | +stats[i]<-test$statistic |
| 33 | +pvalues[i]<-test$p.value |
| 34 | +alts[i]<-test$alternative |
| 35 | +CI_LBs[i]<-test$conf.int[1] |
| 36 | +CI_UBs[i]<-test$conf.int[2] |
| 37 | + } |
| 38 | +temp<- tibble(test=testName,mu=mu,variance=variance,stat=stats,pvalue=pvalues,alt=alts,CI_LB=CI_LBs,CI_UB=CI_UBs) |
| 39 | +sim_results<-sim_results %>% bind_rows(temp) |
| 40 | + rm(stats,pvalues,alts,testName,temp,i) |
| 41 | + } |
| 42 | + |
| 43 | +for (altin c("two.sided","less","greater")) { |
| 44 | +stats<- vector(mode="numeric",length=B) |
| 45 | +pvalues<- vector(mode="numeric",length=B) |
| 46 | +alts<- vector(mode="character",length=B) |
| 47 | +CI_LBs<- vector(mode="numeric",length=B) |
| 48 | +CI_UBs<- vector(mode="numeric",length=B) |
| 49 | +testName<-"log_normal_variance_one_sample" |
| 50 | +for (iin1:B) { |
| 51 | + set.seed(i) |
| 52 | +x<- rlnorm(n=N,mean=mu,sd=variance^.5) |
| 53 | +test<- log_normal_variance_one_sample(x,variance,alt) |
| 54 | +stats[i]<-test$statistic |
| 55 | +pvalues[i]<-test$p.value |
| 56 | +alts[i]<-test$alternative |
| 57 | +CI_LBs[i]<-test$conf.int[1] |
| 58 | +CI_UBs[i]<-test$conf.int[2] |
| 59 | + } |
| 60 | +temp<- tibble(test=testName,mu=mu,variance=variance,stat=stats,pvalue=pvalues,alt=alts,CI_LB=CI_LBs,CI_UB=CI_UBs) |
| 61 | +sim_results<-sim_results %>% bind_rows(temp) |
| 62 | + rm(stats,pvalues,alts,testName,temp,i) |
| 63 | + } |
| 64 | + } |
| 65 | +} |
| 66 | + |
| 67 | +# Check structure |
| 68 | +sim_results %>% |
| 69 | + distinct(test) %>% |
| 70 | + nrow()==2 |
| 71 | + |
| 72 | +sim_results %>% |
| 73 | + distinct(mu) %>% |
| 74 | + nrow()== length(mus) |
| 75 | + |
| 76 | +sim_results %>% |
| 77 | + distinct(variance) %>% |
| 78 | + nrow()== length(variances) |
| 79 | + |
| 80 | +sim_results %>% |
| 81 | + distinct(alt) %>% |
| 82 | + nrow()==3 |
| 83 | + |
| 84 | +sim_results %>% |
| 85 | + pull(pvalue) %>% |
| 86 | + min(na.rm=TRUE)>=0 |
| 87 | + |
| 88 | +sim_results %>% |
| 89 | + pull(pvalue) %>% |
| 90 | + max(na.rm=TRUE)<=1 |
| 91 | + |
| 92 | +all(sim_results$CI_LB<sim_results$CI_UB) |
| 93 | + |
| 94 | +# save |
| 95 | +sim_results %>% |
| 96 | + saveRDS("results/log_normal_type_one.rds") |
| 97 | + |
| 98 | +rm(x,test,alt,mu,mus,variance,variances) |
| 99 | + |
| 100 | +################ |
| 101 | +# Type II |
| 102 | +################ |
| 103 | + |
| 104 | +mu0<-0 |
| 105 | +variance0<-1 |
| 106 | +muEffectSizes<- seq(-.20,.20,.05) %>% |
| 107 | + round(2) %>% |
| 108 | + setdiff(0) |
| 109 | + |
| 110 | +sim_results<- tibble() |
| 111 | +for (muEffectSizeinmuEffectSizes) { |
| 112 | +if (muEffectSize<0) { |
| 113 | +for (altin c("two.sided","less")) { |
| 114 | +stats<- vector(mode="numeric",length=B) |
| 115 | +pvalues<- vector(mode="numeric",length=B) |
| 116 | +alts<- vector(mode="character",length=B) |
| 117 | +testName<-"log_normal_mu_one_sample" |
| 118 | +for (iin1:B) { |
| 119 | + set.seed(i) |
| 120 | +x<- rlnorm(n=N,mean=mu0+muEffectSize,sd=variance0^.5) |
| 121 | +test<- log_normal_mu_one_sample(x,mu0,alt) |
| 122 | +stats[i]<-test$statistic |
| 123 | +pvalues[i]<-test$p.value |
| 124 | +alts[i]<-test$alternative |
| 125 | + } |
| 126 | +temp<- tibble(test=testName,effectSize=muEffectSize,stat=stats,pvalue=pvalues,alt=alts) |
| 127 | +sim_results<-sim_results %>% bind_rows(temp) |
| 128 | + rm(stats,pvalues,alts,testName,temp,i) |
| 129 | + } |
| 130 | + }else { |
| 131 | +for (altin c("two.sided","greater")) { |
| 132 | +stats<- vector(mode="numeric",length=B) |
| 133 | +pvalues<- vector(mode="numeric",length=B) |
| 134 | +alts<- vector(mode="character",length=B) |
| 135 | +testName<-"log_normal_mu_one_sample" |
| 136 | +for (iin1:B) { |
| 137 | + set.seed(i) |
| 138 | +x<- rlnorm(n=N,mean=mu0+muEffectSize,sd=variance0^.5) |
| 139 | +test<- log_normal_mu_one_sample(x,mu0,alt) |
| 140 | +stats[i]<-test$statistic |
| 141 | +pvalues[i]<-test$p.value |
| 142 | +alts[i]<-test$alternative |
| 143 | + } |
| 144 | +temp<- tibble(test=testName,effectSize=muEffectSize,stat=stats,pvalue=pvalues,alt=alts) |
| 145 | +sim_results<-sim_results %>% bind_rows(temp) |
| 146 | + rm(stats,pvalues,alts,testName,temp,i) |
| 147 | + } |
| 148 | + } |
| 149 | +} |
| 150 | + |
| 151 | +rm(alt,muEffectSize,x) |
| 152 | + |
| 153 | +mu0<-0 |
| 154 | +variance0<-15 |
| 155 | +varianceEffectSizes<- seq(-5,5,1) %>% |
| 156 | + setdiff(0) |
| 157 | + |
| 158 | +for (varianceEffectSizeinvarianceEffectSizes) { |
| 159 | +if (varianceEffectSize<0) { |
| 160 | +for (altin c("two.sided","less")) { |
| 161 | +stats<- vector(mode="numeric",length=B) |
| 162 | +pvalues<- vector(mode="numeric",length=B) |
| 163 | +alts<- vector(mode="character",length=B) |
| 164 | +testName<-"log_normal_variance_one_sample" |
| 165 | +for (iin1:B) { |
| 166 | + set.seed(i) |
| 167 | +x<- rlnorm(n=N,mean=mu0,sd= (variance0+varianceEffectSize)^.5) |
| 168 | +test<- log_normal_variance_one_sample(x,variance0,alt) |
| 169 | +stats[i]<-test$statistic |
| 170 | +pvalues[i]<-test$p.value |
| 171 | +alts[i]<-test$alternative |
| 172 | + } |
| 173 | +temp<- tibble(test=testName,effectSize=varianceEffectSize,stat=stats,pvalue=pvalues,alt=alts) |
| 174 | +sim_results<-sim_results %>% bind_rows(temp) |
| 175 | + rm(stats,pvalues,alts,testName,temp,i) |
| 176 | + } |
| 177 | + }else { |
| 178 | +for (altin c("two.sided","greater")) { |
| 179 | +stats<- vector(mode="numeric",length=B) |
| 180 | +pvalues<- vector(mode="numeric",length=B) |
| 181 | +alts<- vector(mode="character",length=B) |
| 182 | +testName<-"log_normal_variance_one_sample" |
| 183 | +for (iin1:B) { |
| 184 | + set.seed(i) |
| 185 | +x<- rlnorm(n=N,mean=mu0,sd= (variance0+varianceEffectSize)^.5) |
| 186 | +test<- log_normal_variance_one_sample(x,variance0,alt) |
| 187 | +stats[i]<-test$statistic |
| 188 | +pvalues[i]<-test$p.value |
| 189 | +alts[i]<-test$alternative |
| 190 | + } |
| 191 | +temp<- tibble(test=testName,effectSize=varianceEffectSize,stat=stats,pvalue=pvalues,alt=alts) |
| 192 | +sim_results<-sim_results %>% bind_rows(temp) |
| 193 | + rm(stats,pvalues,alts,testName,temp,i) |
| 194 | + } |
| 195 | + } |
| 196 | +} |
| 197 | + |
| 198 | +# Check structure |
| 199 | +sim_results %>% |
| 200 | + distinct(test) %>% |
| 201 | + nrow()==2 |
| 202 | + |
| 203 | +sim_results %>% |
| 204 | + distinct(alt) %>% |
| 205 | + nrow()==3 |
| 206 | + |
| 207 | +sim_results %>% |
| 208 | + distinct(alt,test) %>% |
| 209 | + nrow()==6 |
| 210 | + |
| 211 | +sim_results %>% |
| 212 | + filter(test=="log_normal_mu_one_sample") %>% |
| 213 | + distinct(effectSize) %>% |
| 214 | + nrow()== length(muEffectSizes) |
| 215 | + |
| 216 | +sim_results %>% |
| 217 | + filter(test=="log_normal_variance_one_sample") %>% |
| 218 | + distinct(effectSize) %>% |
| 219 | + nrow()== length(varianceEffectSizes) |
| 220 | + |
| 221 | +sim_results %>% |
| 222 | + pull(pvalue) %>% |
| 223 | + min(na.rm=TRUE)>=0 |
| 224 | + |
| 225 | +sim_results %>% |
| 226 | + pull(pvalue) %>% |
| 227 | + max(na.rm=TRUE)<=1 |
| 228 | + |
| 229 | +# save |
| 230 | +sim_results %>% |
| 231 | + saveRDS("results/log_normal_type_two.rds") |
| 232 | + |
| 233 | +rm(alt,varianceEffectSize,x,test) |
| 234 | + |
| 235 | +rm(list= ls()) |