You signed in with another tab or window.Reload to refresh your session.You signed out in another tab or window.Reload to refresh your session.You switched accounts on another tab or window.Reload to refresh your session.Dismiss alert
Now you have Keras model. You can save it as h5 file and then convert it withtensorflowjs_converter but it doesn't work sometimes. As alternative, you may get Tensorflow Graph and save it as a frozen model:
# Function below copied from here:# https://stackoverflow.com/questions/45466020/how-to-export-keras-h5-to-tensorflow-pbdeffreeze_session(session,keep_var_names=None,output_names=None,clear_devices=True):""" Freezes the state of a session into a pruned computation graph. Creates a new computation graph where variable nodes are replaced by constants taking their current value in the session. The new graph will be pruned so subgraphs that are not necessary to compute the requested outputs are removed. @param session The TensorFlow session to be frozen. @param keep_var_names A list of variable names that should not be frozen, or None to freeze all the variables in the graph. @param output_names Names of the relevant graph outputs. @param clear_devices Remove the device directives from the graph for better portability. @return The frozen graph definition. """fromtensorflow.python.framework.graph_utilimportconvert_variables_to_constantsgraph=session.graphwithgraph.as_default():freeze_var_names= \list(set(v.op.nameforvintf.global_variables()).difference(keep_var_namesor []))output_names=output_namesor []output_names+= [v.op.nameforvintf.global_variables()]input_graph_def=graph.as_graph_def()ifclear_devices:fornodeininput_graph_def.node:node.device=""frozen_graph=convert_variables_to_constants(session,input_graph_def,output_names,freeze_var_names)returnfrozen_graphfromkerasimportbackendasKimporttensorflowastffrozen_graph=freeze_session(K.get_session(),output_names=[out.op.nameforoutink_model.outputs])tf.train.write_graph(frozen_graph,".","my_model.pb",as_text=False)print([iforiink_model.outputs])
You will see the output layer name, so, now it's time to convertmy_model.pb to tfjs model:
We use the dummy-variable to trace the model (with jit.trace):
frompytorch2kerasimportpytorch_to_keras# we should specify shape of the input tensork_model=pytorch_to_keras(model,input_var, [(10,32,32,)],verbose=True)
You can also set H and W dimensions to None to make your model shape-agnostic (e.g. fully convolutional netowrk):
frompytorch2keras.converterimportpytorch_to_keras# we should specify shape of the input tensork_model=pytorch_to_keras(model,input_var, [(10,None,None,)],verbose=True)
That's all! If all the modules have converted properly, the Keras model will be stored in thek_model variable.
API
Here is the only methodpytorch_to_keras frompytorch2keras module.