Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

What the Package Does (One Line, Title Case)

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
NotificationsYou must be signed in to change notification settings

fndemarqui/bellreg

Repository files navigation

R build statusCRAN_Status_BadgeDownloadsTotal DownloadsR-CMD-check

The goal of bellreg is to provide a set of functions to fit regressionmodels for count data with overdispersion using the Bell distribution.The implemented models account for ordinary and zero-inflated regressionmodels under both frequentist and Bayesian approaches. Theoreticaldetails regarding the models implemented in the package can be found inCastellares et al. (2018) doi:10.1016/j.apm.2017.12.014 and Lemonte etal. (2020) doi:10.1080/02664763.2019.1636940.

Installation

You can install the development version of bellreg fromGitHub with:

# install.packages("devtools")devtools::install_github("fndemarqui/bellreg")

Example

library(bellreg)data(faults)# ML approach:mle<- bellreg(nf~lroll,data=faults,approach="mle",init=0)summary(mle)#> Call:#> bellreg(formula = nf ~ lroll, data = faults, approach = "mle",#>     init = 0)#>#> Coefficients:#>               Estimate     StdErr z.value   p.value#> (Intercept) 0.98524220 0.33219474  2.9659  0.003018 **#> lroll       0.00190934 0.00049004  3.8963 9.766e-05 ***#> ---#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1#>#> logLik = -88.96139   AIC = 181.9228# Bayesian approach:bayes<- bellreg(nf~lroll,data=faults,approach="bayes",refresh=FALSE)summary(bayes)#>#> bellreg(formula = nf ~ lroll, data = faults, approach = "bayes",#>     refresh = FALSE)#>#>              mean se_mean    sd  2.5%   25%   50%   75% 97.5%    n_eff  Rhat#> (Intercept) 0.984   0.007 0.334 0.331 0.758 0.978 1.213 1.627 2222.313 1.001#> lroll       0.002   0.000 0.000 0.001 0.002 0.002 0.002 0.003 2478.992 1.001#>#> Inference for Stan model: bellreg.#> 4 chains, each with iter=2000; warmup=1000; thin=1;#> post-warmup draws per chain=1000, total post-warmup draws=4000.

About

What the Package Does (One Line, Title Case)

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp