Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Cubic spline approximation (smoothing)

License

NotificationsYou must be signed in to change notification settings

espdev/csaps

Repository files navigation

csaps

PyPI versionSupported Python versionsGitHub Actions (Tests)Documentation StatusCoverage StatusLicense

csaps is a Python package for univariate, multivariate and n-dimensional grid data approximation using cubic smoothing splines.The package can be useful in practical engineering tasks for data approximation and smoothing.

Installing

Use pip for installing:

pip install -U csaps

or Poetry:

poetry add csaps

The module depends only on NumPy and SciPy. Python 3.10 or above is supported.

Simple Examples

Here is a couple of examples of smoothing data.

An univariate data smoothing:

importnumpyasnpimportmatplotlib.pyplotaspltfromcsapsimportcsapsnp.random.seed(1234)x=np.linspace(-5.,5.,25)y=np.exp(-(x/2.5)**2)+ (np.random.rand(25)-0.2)*0.3xs=np.linspace(x[0],x[-1],150)ys=csaps(x,y,xs,smooth=0.85)plt.plot(x,y,'o',xs,ys,'-')plt.show()

univariate

A surface data smoothing:

importnumpyasnpimportmatplotlib.pyplotaspltfrommpl_toolkits.mplot3dimportAxes3Dfromcsapsimportcsapsnp.random.seed(1234)xdata= [np.linspace(-3,3,41),np.linspace(-3.5,3.5,31)]i,j=np.meshgrid(*xdata,indexing='ij')ydata= (3* (1-j)**2.*np.exp(-(j**2)- (i+1)**2)-10* (j/5-j**3-i**5)*np.exp(-j**2-i**2)-1/3*np.exp(-(j+1)**2-i**2))ydata=ydata+ (np.random.randn(*ydata.shape)*0.75)ydata_s=csaps(xdata,ydata,xdata,smooth=0.988)fig=plt.figure(figsize=(7,4.5))ax=fig.add_subplot(111,projection='3d')ax.set_facecolor('none')c= [s['color']forsinplt.rcParams['axes.prop_cycle']]ax.plot_wireframe(j,i,ydata,linewidths=0.5,color=c[0],alpha=0.5)ax.scatter(j,i,ydata,s=10,c=c[0],alpha=0.5)ax.plot_surface(j,i,ydata_s,color=c[1],linewidth=0,alpha=1.0)ax.view_init(elev=9.,azim=290)plt.show()

surface

Documentation

More examples of usage and the full documentation can be found athttps://csaps.readthedocs.io.

Development

We use Poetry to manage the project:

git clone https://github.com/espdev/csaps.gitcd csapspoetry install -E docs

Also, install pre-commit hooks:

poetry run pre-commit install

Testing and Linting

We use pytest for testing and ruff/mypy for linting.Usepoethepoet to run tests and linters:

poetry run poe testpoetry run poe check

Algorithm and Implementation

csaps Python package is inspired by MATLABCSAPS function that is an implementation ofFortran routine SMOOTH fromPGS (originally written by Carl de Boor).

Also, the algothithm implementation in other languages:

  • csaps-rs Rust ndarray/sprs based implementation
  • csaps-cpp C++11 Eigen based implementation (incomplete)

References

C. de Boor, A Practical Guide to Splines, Springer-Verlag, 1978.

License

MIT

Contributors4

  •  
  •  
  •  
  •  

Languages


[8]ページ先頭

©2009-2025 Movatter.jp