Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

Archive of the Future Frame's open source Python package with inference code for foundation tabular models.

License

NotificationsYou must be signed in to change notification settings

edadaltocg/futureframe

Repository files navigation

Empowering Data Scientists with Foundation Models for Tabular Data

  • This Python package allows you to interact with pre-trained foundation models for tabular data.
  • Easily fine-tune them on your classification and regression use cases in a single line of code.

Installation

pip install futureframe

Quick Start

Use Future Frame to fine-tune a pre-trained foundation model on a classification task.

# Import standard librariesimportpandasaspdfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimportroc_auc_scoreimportfutureframeasff# Import datadataset_name="https://raw.githubusercontent.com/futureframeai/futureframe/main/tests/data/churn.csv"target_variable="Churn"df=pd.read_csv(dataset_name)X,y=df.drop(columns=[target_variable]),df[target_variable]X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3)# Fine-tune a pre-trained classifier with Future Framemodel=ff.models.cm2.CM2Classifier()model.finetune(X_train,y_train)y_pred=model.predict(X_test)auc=roc_auc_score(y_test,y_pred)print(f"AUC:{auc:0.2f}")

Models

Model NamePaper TitlePaperGitHub
CM2Towards Cross-Table Masked Pretraining for Web Data MiningYe et al., 2024Link
CARTE (soon!)CARTE: Pretraining and Transfer for Tabular LearningKim et al., 2024Link
TabText (soon!)TabText: A Flexible and Contextual Approach to Tabular Data RepresentationCarballo et al., 2023-
TabPFN (soon!)TabPFN: A Transformer That Solves Small Tabular Classification Problems in a SecondHollmann et al., 2022Link
TransTab (soon!)Transtab: Learning Transferable Tabular Transformers Across TablesWang et al., 2022Link

More models will be integrated into the library soon!

More to come!

Important links

Contributing

  • We are currently under heavy development.
  • To report a bug, please write anissue.

About

Archive of the Future Frame's open source Python package with inference code for foundation tabular models.

Resources

License

Stars

Watchers

Forks

Languages


[8]ページ先頭

©2009-2025 Movatter.jp