Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

License

NotificationsYou must be signed in to change notification settings

dthomson85/Deploying-a-Scalable-ML-Pipeline-with-FastAPI

 
 

Repository files navigation

Working in a command line environment is recommended for ease of use with git and dvc. If on Windows, WSL1 or 2 is recommended.

  • Option 1: use the supplied fileenvironment.yml to create a new environment with conda
  • Option 2: use the supplied filerequirements.txt to create a new environment with pip

Repositories

  • Create a directory for the project and initialize git.
    • As you work on the code, continually commit changes. Trained models you want to use in production must be committed to GitHub.
  • Connect your local git repo to GitHub.
  • Setup GitHub Actions on your repo. You can use one of the pre-made GitHub Actions if at a minimum it runs pytest and flake8 on push and requires both to pass without error.
    • Make sure you set up the GitHub Action to have the same version of Python as you used in development.

Data

  • Download census.csv and commit it to dvc.
  • This data is messy, try to open it in pandas and see what you get.
  • To clean it, use your favorite text editor to remove all spaces.

Model

  • Using the starter code, write a machine learning model that trains on the clean data and saves the model. Complete any function that has been started.
  • Write unit tests for at least 3 functions in the model code.
  • Write a function that outputs the performance of the model on slices of the data.
    • Suggestion: for simplicity, the function can just output the performance on slices of just the categorical features.
  • Write a model card using the provided template.

API Creation

  • Create a RESTful API using FastAPI this must implement:
    • GET on the root giving a welcome message.
    • POST that does model inference.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python100.0%

[8]ページ先頭

©2009-2025 Movatter.jp