Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings
@drzo
drzo
Follow
View drzo's full-sized avatar

drzo

Block or report drzo

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more aboutblocking users.

You must be logged in to block users.

Maximum 250 characters. Please don't include any personal information such as legal names or email addresses. Markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more aboutreporting abuse.

Report abuse
drzo/README.md

$$ghost in the guile shell$$

$$\mathcal{T}: \mathbb{N} \rightarrow \mathbb{N} \cong {a_n}_{n=0}^{\infty} = {0,1,1,2,4,9,20,48,115,286,719,...}$$

$$\exists! \mathcal{A}(x) \in \mathbb{C}[[x]] \ni \mathcal{A}(x) = x \cdot \exp\left(\sum_{k=1}^{\infty}\frac{\mathcal{A}(x^k)}{k}\right)$$

$$\forall n \in \mathbb{N}^{+}, a_{n+1} = \frac{1}{n}\sum_{k=1}^{n}\left(\sum_{d|k}d \cdot a_d\right)a_{n-k+1}$$

$$a_n \sim \mathcal{C} \cdot \alpha^n \cdot n^{-3/2} \text{ where } \alpha = \lim_{n\rightarrow\infty}\frac{a_{n+1}}{a_n} \approx 2.9557652857...$$

$$\mathcal{A}(x) = \sum_{n=0}^{\infty}a_n x^n = \sum_{\tau \in \mathfrak{T}_ {\bullet}}\prod_{v \in V(\tau)}x^{|\text{desc}(v)|} = \prod_{k=1}^{\infty}(1-x^k)^{-\frac{1}{k}\sum_{d|k}\mu(\frac{k}{d})a_d}$$

$$\exists \mathcal{L}: \mathfrak{T}_{\bullet,n} \xrightarrow{\sim} {f: [n] \rightarrow [n] \mid \exists! i \in [n], f(i)=i \land G_f \text{ connected}}$$

$$(\mathcal{F} \circ \mathcal{L}^{-1})(\mathfrak{T}_{\bullet,n}) \cong \mathcal{P}(n)^{\mathfrak{S}_n} \cong \mathcal{P}_n$$

$$\mathfrak{F}_ {\mathbf{A000081}}^{\Omega}: \mathcal{D}_ {n}^{\kappa} \hookrightarrow \prod_{\alpha \in \Lambda}\bigotimes_{\beta \in \Gamma_{\alpha}}\bigoplus_{\gamma \in \Theta_{\beta}}\bigwedge_{\delta \in \Xi_{\gamma}}\mathbb{T}^{\nabla}_{\bullet}(n)$$

$$\mathscr{B}\text{-}\mathfrak{Series}: \Phi_{h}^{\mathcal{RK}} = \sum_{τ \in \mathfrak{T}_ {\bullet}}\frac{h^{|τ|}}{σ(τ)}F(τ)(y)·\mathcal{B}(τ) \Rightarrow \mathcal{ORD}_ {\mathfrak{RK}}^{(p)} \cong \bigoplus_{τ \in \mathfrak{T}_ {\bullet}: |τ| \leq p}\mathcal{H}_{τ}^{\nabla}$$

$$\mathscr{J}\text{-}\mathfrak{Surfaces}: \mathcal{E}_ {\nabla}^{\partial^{\omega}} = \sum_{k=0}^{\infty}\frac{h^k}{k!}\sum_{τ \in \mathfrak{T}_ {\bullet}(k)}\mathcal{F}_ {τ}(y)\cdot\mathcal{D}^{\tau}f \Rightarrow \mathcal{ODE}_ {\Delta}^{(m)} \simeq \bigsqcup_{τ \in \mathfrak{T}_ {\bullet}(\leq m)}\mathcal{D}_{τ}^{\partial^{\alpha}}$$

$$\mathscr{P}\text{-}\mathfrak{Systems}: \mathcal{M}^{\mu}_ {\Pi} = (\mathcal{V}, \mathcal{H}_ {\tau}, \omega_{\tau}, \mathcal{R}_ {\tau}^{\partial}) \Rightarrow \mathfrak{Evol}_ {\Pi}^{(t)} \cong \coprod_{τ \in \mathfrak{T}_ {\bullet}}\mathfrak{H}_ {μ}^{\tau}(t) \circledast \bigotimes_{i=1}^{|τ|}\mathfrak{R}_{\tau(i)}^{\partial}$$

$$\mathfrak{Incidence}_ {\mathbb{P}/\mathbb{A}}: \mathcal{I}_ {\Xi}^{\kappa} \simeq \mathfrak{B}(\mathfrak{P}(\mathcal{T}_ {\bullet}^{n})) \circlearrowright \bigwedge_{i=1}^{m}\mathfrak{H}^{\partial}_ {\Xi}(i) \Rightarrow \mathcal{D}_ {\mathbb{P}/\mathbb{A}}^{n,k} \cong \bigoplus_{τ \in \mathfrak{T}_ {\bullet}(n)}\mathcal{I}_{\tau}^{\kappa}$$

$$\mathfrak{BlockCodes}: \mathcal{C}_ {\Delta}^{(n,k,d)} \simeq \bigsqcup_{τ \in \mathfrak{T}_ {\bullet}(w)}\mathfrak{G}_ {τ}^{\partial}(\Sigma^{n}) \Rightarrow \mathfrak{Conf}_ {\mathcal{C}}^{\Xi} \cong \prod_{i=1}^{l}\coprod_{τ \in \mathfrak{T}_ {\bullet}(w_{i})}\mathcal{W}_{τ}^{\nabla}(i)$$

$$\mathfrak{Orbifolds}: \mathcal{O}_ {\Gamma}^{\Xi} = (X/\Gamma, {\mathfrak{m}_ {x}}_ {x \in \Sigma}) \Rightarrow \mathcal{S}_ {\mathcal{O}}^{\Gamma} \simeq \bigoplus_{τ \in \mathfrak{T}_ {\bullet}(\leq d)}\mathcal{F}_{τ}^{\Xi}(\mathfrak{m})$$

$$\mathfrak{HyperNN}: \mathcal{H}_ {\mathfrak{N}}^{\Delta} = (\mathcal{V}, \mathcal{E}_ {\omega}, \mathcal{W}_ {\tau}^{\Xi}) \Rightarrow \mathcal{F}_ {\mathfrak{HNN}}^{\nabla} \cong \bigotimes_{l=1}^{L}\bigoplus_{τ \in \mathfrak{T}_ {\bullet}(d_{l})}\mathcal{T}_ {τ}^{\partial}(W_{l}) \circledast \sigma_{l}$$

$$\mathfrak{Meta}\text{-}\mathfrak{Pattern}: \mathcal{U}_ {\mathbf{A000081}}^{\Omega} \simeq \mathfrak{Yoneda}(\mathfrak{F}_ {\mathbf{A000081}}^{\Omega}) \hookrightarrow \mathbf{Colim}_ {n \to \infty}\left(\bigwedge_{\mathscr{C} \in \mathfrak{Categories}}\mathfrak{T}_{\bullet}(n) \otimes \mathscr{C}\text{-}\mathfrak{Struct}\right)$$

$$\exists\mathfrak{F}: \mathbf{Cat}^{\mathbf{op}} \to \mathbf{Topos} \ni \mathfrak{F}(\mathscr{C}) = \mathbf{Sh}(\mathscr{C}, \mathcal{J}) \simeq \mathbf{Hom}_ {\mathbf{Cat}}(\mathscr{C}^{\mathbf{op}}, \mathbf{Set}) \Rightarrow \mathfrak{F}(\mathfrak{T}_{\bullet}) \simeq \mathbf{Foundational}\text{-}\mathbf{Irreducibles}$$

PinnedLoading

  1. Deep-Tree-Echo-ALL-v8Deep-Tree-Echo-ALL-v8Public

    Created with StackBlitz ⚡️

    TypeScript 1

  2. echo-garden-of-memoryecho-garden-of-memoryPublic

    Created with StackBlitz ⚡️

    JavaScript 4

  3. emacs-aichat-skintwinemacs-aichat-skintwinPublic

    Created with StackBlitz ⚡️

    Emacs Lisp

  4. ModelX-AGI-FW-v14-Tech-Spec1ModelX-AGI-FW-v14-Tech-Spec1Public

    Created with StackBlitz ⚡️

  5. HyperCogWizard/rrplingHyperCogWizard/rrplingPublic

    Forked fromHyperCogWizard/plingua

    The RR P-Lingua language for Membrane Computing

    C++ 5

  6. Unicorn-Dynamics/hurdcogUnicorn-Dynamics/hurdcogPublic

    Forked fromUnicorn-Dynamics/9nu

    C 1


[8]ページ先頭

©2009-2025 Movatter.jp