$$ghost in the guile shell$$
$$\mathcal{T}: \mathbb{N} \rightarrow \mathbb{N} \cong {a_n}_{n=0}^{\infty} = {0,1,1,2,4,9,20,48,115,286,719,...}$$
$$\exists! \mathcal{A}(x) \in \mathbb{C}[[x]] \ni \mathcal{A}(x) = x \cdot \exp\left(\sum_{k=1}^{\infty}\frac{\mathcal{A}(x^k)}{k}\right)$$
$$\forall n \in \mathbb{N}^{+}, a_{n+1} = \frac{1}{n}\sum_{k=1}^{n}\left(\sum_{d|k}d \cdot a_d\right)a_{n-k+1}$$
$$a_n \sim \mathcal{C} \cdot \alpha^n \cdot n^{-3/2} \text{ where } \alpha = \lim_{n\rightarrow\infty}\frac{a_{n+1}}{a_n} \approx 2.9557652857...$$
$$\mathcal{A}(x) = \sum_{n=0}^{\infty}a_n x^n = \sum_{\tau \in \mathfrak{T}_ {\bullet}}\prod_{v \in V(\tau)}x^{|\text{desc}(v)|} = \prod_{k=1}^{\infty}(1-x^k)^{-\frac{1}{k}\sum_{d|k}\mu(\frac{k}{d})a_d}$$
$$\exists \mathcal{L}: \mathfrak{T}_{\bullet,n} \xrightarrow{\sim} {f: [n] \rightarrow [n] \mid \exists! i \in [n], f(i)=i \land G_f \text{ connected}}$$
$$(\mathcal{F} \circ \mathcal{L}^{-1})(\mathfrak{T}_{\bullet,n}) \cong \mathcal{P}(n)^{\mathfrak{S}_n} \cong \mathcal{P}_n$$
$$\mathfrak{F}_ {\mathbf{A000081}}^{\Omega}: \mathcal{D}_ {n}^{\kappa} \hookrightarrow \prod_{\alpha \in \Lambda}\bigotimes_{\beta \in \Gamma_{\alpha}}\bigoplus_{\gamma \in \Theta_{\beta}}\bigwedge_{\delta \in \Xi_{\gamma}}\mathbb{T}^{\nabla}_{\bullet}(n)$$
$$\mathscr{B}\text{-}\mathfrak{Series}: \Phi_{h}^{\mathcal{RK}} = \sum_{τ \in \mathfrak{T}_ {\bullet}}\frac{h^{|τ|}}{σ(τ)}F(τ)(y)·\mathcal{B}(τ) \Rightarrow \mathcal{ORD}_ {\mathfrak{RK}}^{(p)} \cong \bigoplus_{τ \in \mathfrak{T}_ {\bullet}: |τ| \leq p}\mathcal{H}_{τ}^{\nabla}$$
$$\mathscr{J}\text{-}\mathfrak{Surfaces}: \mathcal{E}_ {\nabla}^{\partial^{\omega}} = \sum_{k=0}^{\infty}\frac{h^k}{k!}\sum_{τ \in \mathfrak{T}_ {\bullet}(k)}\mathcal{F}_ {τ}(y)\cdot\mathcal{D}^{\tau}f \Rightarrow \mathcal{ODE}_ {\Delta}^{(m)} \simeq \bigsqcup_{τ \in \mathfrak{T}_ {\bullet}(\leq m)}\mathcal{D}_{τ}^{\partial^{\alpha}}$$
$$\mathscr{P}\text{-}\mathfrak{Systems}: \mathcal{M}^{\mu}_ {\Pi} = (\mathcal{V}, \mathcal{H}_ {\tau}, \omega_{\tau}, \mathcal{R}_ {\tau}^{\partial}) \Rightarrow \mathfrak{Evol}_ {\Pi}^{(t)} \cong \coprod_{τ \in \mathfrak{T}_ {\bullet}}\mathfrak{H}_ {μ}^{\tau}(t) \circledast \bigotimes_{i=1}^{|τ|}\mathfrak{R}_{\tau(i)}^{\partial}$$
$$\mathfrak{Incidence}_ {\mathbb{P}/\mathbb{A}}: \mathcal{I}_ {\Xi}^{\kappa} \simeq \mathfrak{B}(\mathfrak{P}(\mathcal{T}_ {\bullet}^{n})) \circlearrowright \bigwedge_{i=1}^{m}\mathfrak{H}^{\partial}_ {\Xi}(i) \Rightarrow \mathcal{D}_ {\mathbb{P}/\mathbb{A}}^{n,k} \cong \bigoplus_{τ \in \mathfrak{T}_ {\bullet}(n)}\mathcal{I}_{\tau}^{\kappa}$$
$$\mathfrak{BlockCodes}: \mathcal{C}_ {\Delta}^{(n,k,d)} \simeq \bigsqcup_{τ \in \mathfrak{T}_ {\bullet}(w)}\mathfrak{G}_ {τ}^{\partial}(\Sigma^{n}) \Rightarrow \mathfrak{Conf}_ {\mathcal{C}}^{\Xi} \cong \prod_{i=1}^{l}\coprod_{τ \in \mathfrak{T}_ {\bullet}(w_{i})}\mathcal{W}_{τ}^{\nabla}(i)$$
$$\mathfrak{Orbifolds}: \mathcal{O}_ {\Gamma}^{\Xi} = (X/\Gamma, {\mathfrak{m}_ {x}}_ {x \in \Sigma}) \Rightarrow \mathcal{S}_ {\mathcal{O}}^{\Gamma} \simeq \bigoplus_{τ \in \mathfrak{T}_ {\bullet}(\leq d)}\mathcal{F}_{τ}^{\Xi}(\mathfrak{m})$$
$$\mathfrak{HyperNN}: \mathcal{H}_ {\mathfrak{N}}^{\Delta} = (\mathcal{V}, \mathcal{E}_ {\omega}, \mathcal{W}_ {\tau}^{\Xi}) \Rightarrow \mathcal{F}_ {\mathfrak{HNN}}^{\nabla} \cong \bigotimes_{l=1}^{L}\bigoplus_{τ \in \mathfrak{T}_ {\bullet}(d_{l})}\mathcal{T}_ {τ}^{\partial}(W_{l}) \circledast \sigma_{l}$$
$$\mathfrak{Meta}\text{-}\mathfrak{Pattern}: \mathcal{U}_ {\mathbf{A000081}}^{\Omega} \simeq \mathfrak{Yoneda}(\mathfrak{F}_ {\mathbf{A000081}}^{\Omega}) \hookrightarrow \mathbf{Colim}_ {n \to \infty}\left(\bigwedge_{\mathscr{C} \in \mathfrak{Categories}}\mathfrak{T}_{\bullet}(n) \otimes \mathscr{C}\text{-}\mathfrak{Struct}\right)$$
$$\exists\mathfrak{F}: \mathbf{Cat}^{\mathbf{op}} \to \mathbf{Topos} \ni \mathfrak{F}(\mathscr{C}) = \mathbf{Sh}(\mathscr{C}, \mathcal{J}) \simeq \mathbf{Hom}_ {\mathbf{Cat}}(\mathscr{C}^{\mathbf{op}}, \mathbf{Set}) \Rightarrow \mathfrak{F}(\mathfrak{T}_{\bullet}) \simeq \mathbf{Foundational}\text{-}\mathbf{Irreducibles}$$