- Notifications
You must be signed in to change notification settings - Fork59
PyTorch implementation of deep reinforcement learning algorithms
License
dongminlee94/deep_rl
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
This repository contains PyTorch implementations of deep reinforcement learning algorithms.The repository will soon be updated including the PyBullet environments!
- Deep Q-Network (DQN) (V. Mnih et al. 2015)
- Double DQN (DDQN) (H. Van Hasselt et al. 2015)
- Advantage Actor Critic (A2C)
- Vanilla Policy Gradient (VPG)
- Natural Policy Gradient (NPG) (S. Kakade et al. 2002)
- Trust Region Policy Optimization (TRPO) (J. Schulman et al. 2015)
- Proximal Policy Optimization (PPO) (J. Schulman et al. 2017)
- Deep Deterministic Policy Gradient (DDPG) (T. Lillicrap et al. 2015)
- Twin Delayed DDPG (TD3) (S. Fujimoto et al. 2018)
- Soft Actor-Critic (SAC) (T. Haarnoja et al. 2018)
- SAC with automatic entropy adjustment (SAC-AEA) (T. Haarnoja et al. 2018)
- Classic control environments (CartPole-v1, Pendulum-v0, etc.) (as described inhere)
- MuJoCo environments (Hopper-v2, HalfCheetah-v2, Ant-v2, Humanoid-v2, etc.) (as described inhere)
- PyBullet environments (HopperBulletEnv-v0, HalfCheetahBulletEnv-v0, AntBulletEnv-v0, HumanoidDeepMimicWalkBulletEnv-v1 etc.) (as described inhere)
- Observation space: 8
- Action space: 3
- Observation space: 17
- Action space: 6
- Observation space: 111
- Action space: 8
- Observation space: 376
- Action space: 17
- Observation space: 15
- Action space: 3
- Observation space: 26
- Action space: 6
- Observation space: 28
- Action space: 8
- Observation space: 197
- Action space: 36
The repository's high-level structure is:
├── agents └── common ├── results ├── data └── graphs └── save_model
To train all the different agents on PyBullet environments, follow these steps:
git clone https://github.com/dongminlee94/deep_rl.gitcd deep_rlpython run_bullet.py
For other environments, change the last line torun_cartpole.py
,run_pendulum.py
,run_mujoco.py
.
If you want to change configurations of the agents, follow this step:
python run_bullet.py \ --env=HumanoidDeepMimicWalkBulletEnv-v1 \ --algo=sac-aea \ --phase=train \ --render=False \ --load=None \ --seed=0 \ --iterations=200 \ --steps_per_iter=5000 \ --max_step=1000 \ --tensorboard=True \ --gpu_index=0
To watch all the learned agents on PyBullet environments, follow these steps:
python run_bullet.py \ --env=HumanoidDeepMimicWalkBulletEnv-v1 \ --algo=sac-aea \ --phase=test \ --render=True \ --load=envname_algoname_... \ --seed=0 \ --iterations=200 \ --steps_per_iter=5000 \ --max_step=1000 \ --tensorboard=False \ --gpu_index=0
You should copy the saved model name insave_model/envname_algoname_...
and paste the copied name inenvname_algoname_...
. So the saved model will be load.
About
PyTorch implementation of deep reinforcement learning algorithms
Topics
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Packages0
Uh oh!
There was an error while loading.Please reload this page.